环保总结可以帮助我们总结环境保护工作的经验,提出改进措施,保护生态环境。写总结时,可以使用一些归纳概括的词汇和句式,以增加文章的表现力。"接下来是一些优秀总结的范文,希望能够为你的写作提供一些启示。"
圆锥体积的说课稿篇一
一般的实验教学只注重实验的结果,而容易忽视在实验过程中对学生能力的培养。如能在实验过程中注意对学生能力的培养,不但能提高学生对知识的理解程度,而且能全面提高学生的综合素质。本文试以人教版小数第十二册《圆锥体积公式推导》为例,浅谈在实验中如何培养学生的各种能力。
一、布置实验内容,激发学生学习兴趣。
记得一位著名的教育家曾说过‘兴趣是最好的老师’。在实验教学过程中如能激发学生的学习兴趣,教学效果会起到事半功倍的作用。圆锥的体积这一节内容是通过实验来推导体积公式的。如何激发学生的学习兴趣是我们首要考虑的问题。所以一上课我便说明今天上一节实验课,要求全体同学都来参与实验操作,看谁做得最好。学生听后欢呼雀跃,学习热情异常高涨。
二、精心准备,巧设疑问。
在实验器材的准备和实验操作上,一定要做到精心设计,还要考虑周全。不但要使学生较容易运用器材做实验,而且要为推导公式打基础。在这一环节中,我首先把全班同学分成6个小组,然后让各小组分别推出一位小组长。由小组长领回实验器材。(每个组的圆柱和圆锥各有不同:1、4组的等底等高,但底面直径和高又有区别;3、6组的不等底也不等高;2组的等底不等高;5组的等高不等底。)让学生认真观察本小组的圆柱和圆锥特征,找出它们的异同;并把圆柱和圆锥的异同记录在实验记录本上。并想一想怎样通过圆柱求出圆锥的体积;大家都勇跃发言,情绪非常高涨。有的同学说用器具装上水,有的说装上沙大米等;有的说用圆锥装满倒进圆柱,有的说圆柱装满倒进圆锥。
三、分组实验,全面提高学生的各种能力。
分组实验能使更多的学生参与实验和讨论,更容易调动学生的学习积极性,更有利于培养学生的团队精神和竞争意识;使学生在实验中学会合作;以及通过实验加强对学生的动手能力、协作能力、分析归纳概括能力等的培养。在分组实验中,我的.具体做法:1、布置实验时说明这次实验看哪一组做得最好,在实验结束时给予表扬。2、在做实验时要求每一位学生都要动手,都要做不同的分工,同时也要配合好其他同学完成整个实验。这样通过各种附带的要求全面训练了学生的能力。
四、学生自由讨论,激发潜能增强自信心。
等底等高。
最后大家齐读三遍:圆锥体的体积是和它等底等高的圆柱体体积的三分之一。
通过实验教学,让我又看到天真活泼的。
[1][2]。
圆锥体积的说课稿篇二
圆锥的体积是在学习了圆锥的认识的基础上进行教学的。
这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。
第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调v=3sh的前提条件是等底等高。
反思:这一环节让学生用转化的思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。
圆锥体积的说课稿篇三
圆锥母线:圆锥的侧面展开形成的'扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
圆锥体积的说课稿篇四
作为一位优秀的人民教师,总不可避免地需要编写说课稿,认真拟定说课稿,那么说课稿应该怎么写才合适呢?以下是小编收集整理的六年级数学《圆锥体积计算》说课稿,仅供参考,大家一起来看看吧。
本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。
这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。
根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。
知识目标:
1、结合具体情境和实践活动,了解圆锥的体积或容积的'含义,进一步体会物体体积和容积的含义。
2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。
3、能运用圆锥体积的计算方法,解决有关实际问题。
能力目标:
培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。
情感目标:
能积极参加实验活动,培养学生探索的精神和小组合作的意识。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历“小实验”活动,在活动中发现规律。
本节课,在教法和学法上力求体现以下两方面:
1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。
2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。
等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。
环节一复习铺垫。
回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。
环节二探索新知。
首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。
探索圆锥体积计算方法。分为以下几个步骤完成。
步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。
步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。
步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。
圆锥体积的说课稿篇五
1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的“做一做”及练习十二的第3、4、5题。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
4、教学目标:
(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法。
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法。
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
(1)看图说出圆锥的底面和高。
(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?
这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
圆锥体积的说课稿篇六
1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的“做一做”及练习十二的第3、4、5题。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
4、教学目标:
(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法。
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法。
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
(1)看图说出圆锥的底面和高。
(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?
这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
圆锥体积的说课稿篇七
圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。
教学目标是:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。
教学重点是:掌握圆锥体积的计算方法。
二、说教法。
根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。
三、说学法。
本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学流程。
为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
1、创设情境,提出问题。
出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的`强烈愿望。
2、探索实验,得出结论。
a、动手操作。
把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。
b、观察猜想。
观察、比较圆柱体与圆锥体。突破知识点(1)“等底等高”;
让学生猜测圆柱体积与它等底等高的圆锥体积的关系,突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。
c、实验求证。
学生动手实验,小组合作探究圆锥体积的计算方法,(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。
通过学生演示、交流、讨论,得出圆锥体积的计算公式:
圆柱的体积等于与它等底等高的圆锥体积的3倍;
圆锥体积等于与它等底等高的圆柱的体积的1/3.
圆锥体积=底面积×高×1/3。
这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。
3、应用结论,解决问题。
(1)以练习的形式出示例1。
通过这道练习,巩固了所学知识。
(2)基础练习:求下面各圆锥的体积。
底面面积是7.8平方米,高是1.8米。
底面半径是4厘米,高是21厘米。
底面直径是6分米,高是6分米。
这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。
(3)出示例2。
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
(4)操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
4、全课总结,课外延伸。
让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。
圆锥体积的说课稿篇八
(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标。
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(三)教学重点、难点和关键。
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
(一)、导入课题。
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。
(二)讲授新知。
1、(1)引入新课。
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:v=1/3sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)。
圆锥体积的说课稿篇九
听了侯老师的《圆锥的体积》一课,收获很多,下面我想重点谈本节课的两点成功之处,希望能与大家一起探讨。
第一:为新知识的学习搭建合理平台。
主要体现在侯老师能够运用原有知识来推动新知识的学习,设计有奖问答和实验等手段,让学生大胆借鉴前面学习圆柱体积公式的方法来探究圆锥体积公式。利用迁移规律,让学生从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,使新旧知识得到整合。这种借鉴的学习方法,不仅使本节课的教学变得轻松,同时有利于学生更深刻地理解和掌握这种学习策略,有利于学生的进一步学习和终身的发展。
第二:注重培养学生的实践能力。
这节课的重点是通过实验来探究圆锥体积公式的由来,侯老师主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做用装满小米的圆柱在空圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是特别设计了一组不等底或不等高的圆柱和圆锥来做倒米实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系。在实验前,让学生了解实验要求,并且提出三个实验目的:(1、圆锥的底面与圆柱的底面有什么关系?他们的高有什么关系?你是怎么知道的?2、圆锥的体积和与它等底等高的圆柱体积有什么关系?3、怎样计算圆锥的体积?计算公式是什么?)以实验目的为主线,让学生小组合作,通过动手操作,有眼睛观察,动脑筋思考,多种感官一起参与活动,由直观到抽象,层层深入,探索出圆锥体积公式的由来,从而理解和掌握了圆锥体积的计算公式,培养了学生的观察能力、操作能力和初步的空间观念,克服了几何形体公式计算教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,是一个探索者、研究者、合作者、发现者,并且获得了富有成效的学习体验。
不过这节课也存在一些不足,教学环节的衔接和时间的分配有些不恰当,教学方法没有多样化,欠缺改革创新。例如:在教学新课时,像传统教学那样,直接拿出圆柱和圆锥容器的教具,让学生根据实验要求和目的,进行倒米实验。我认为在实验前,一定要为学生创设良好的问题情景,如(你觉得圆锥体积的大小与它的什么有关?你认为圆锥的体积和什么图形的`体积关系最密切?猜一猜它们的体积有什么关系呢?你们想知道它们的关系吗?)通过师生交流、问答、猜想等形式,强化问题意识,激发学生的思维,使学生产生强烈的求知欲望。这时候,学生就迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣盎然。这样学生的思维被激活了,学习的积极性提高了,兴趣变浓了,课堂气氛变得热烈,那么教学效率,教学效果就可想而知了。
当然,我相信#老师通过这次的锻炼,在今后的教学道路上一定会越走越宽广。谢谢大家!
圆锥体积的说课稿篇十
大家下午好!今天我将要为大家讲的课题是“基本几何体(圆柱圆锥)”。是高教版《机械制图》第三章正投影法和三视图第六节的内容。
1、教材的地位和作用。
今天所讲的内容属于第二版《机械制图》中第三章的第6节,整个这一章主要讲正投影法和三视图,正投影法是绘图和阅读机械图样的理论基础,这一节主要讲基本几何体的投影和表面点的求法,是正投影法的应用是今后学习的基础。
2、学情分析。
要想讲好一堂课,不仅要备教材,还要备学生,只有对授课对象也就是学生的知识结构、心理特征进行分析、掌握,才能制定出切合实际的教学目标和教学重点。在学习本节内容之前,在学习本节内容之前,学生已经掌握学习画平面立体三视图和求它们表面上点的投影的能力水平基础,知识水平不应有困难,能力水平也不应有困难,但要通过多做练习来达到熟练的目的,并且注意对个别学习困难学生的辅导。
3、教学目标。
知识目标。
1)、掌握圆柱、圆锥的形成和三视图特征;
2)、掌握在圆柱、圆锥表面上求点的投影的作图方法。
3)、熟知基本体尺寸标注的基本方法。
能力目标。
1)、能正确的画出圆柱、圆锥的三视图和在它们表面上求点的投影。
2)、具备正确标注基本体尺寸的能力。
素质目标。
培养学生的观察能力和学习能力及对空间形体的分析能力。
4、教学重点和难点。
[教学重点]。
1、圆柱、圆锥三视图特征和投影分析、视图画法、表面上点的投影;
2、看图、绘图、标注尺寸三大能力的培养。
[难点]。
空间概念的`建立和训练;圆锥表面上点的投影作图方法。
1.讲授法:通过老师的讲解,使学生掌握相关知识。
3.模型展示发:课前老师指导学生自己做些几何体帮助自己分析和观察。
教师的教是为了不教而教,这要求我们教师在授课中不仅要让学生听懂、学会,还要指导他们的学习方法,不能让学生离开老师这根拐棍就不会走路了,必须学会自主学习。在本节内容的讲授中要引导学生积极思考,善于提问,形成主动探究和协作学习的良好学习习惯。
1、复习导入(10分钟)。
复习回顾。
1)、简述棱柱、棱锥的视图特征和画图步骤,求棱锥表面上点的投影的方法;
2)、反馈、讲评作业批改情况;
3)、预习检测:圆柱和圆锥是怎样形成的?圆柱的三视图和四棱柱的三视图有什么不同?
导入新课。
简述本次课概念、要点、作用和地位;导出学习目标。
圆柱体和圆锥体都是机器零件上应用最广的基本几何体之一,本次课主要讨论两基本体的视图分析,并通过分析,熟练掌握其三视图的读、画和标注方法和能力。
2、新课教学(75分钟)。
1)、结合课件和模型同学们共同观察形体的特征。特别是引出并讲清“轮廓素线”(或称为转向轮廓线)的概念和意义。这为解决其表面交线(截交线、相贯线)的求作问题,提供依据和方法。
2)、根据立体模型和形体特征作立体的三视图,这当中主要突出作图步骤。
3)、利用特殊位置面具有积聚性的特性求圆柱表面点的投影和对圆柱进行尺寸标注。讲解时一定突出圆柱和圆锥三视图的特征,拓展学生的感性积累和空间想象力,回顾辅助线法求棱锥一般位置面上点的投影的方法,引出素线法(或纬圆法)求圆锥面上点的投影的作图方法。启发学生举一反三。
4)、用一些课堂练习巩固,教师点拨解答难点。改变立体的放置位置,多位之多答案,鼓励发散思维。
3、小结。
1)、结合课件和板书简述圆柱、圆锥的三视图作图步骤:画基准作俯视图、根据三等关系作主视图、最后作左视图。
2)、表面上求点的投影的基本方法。素线法(辅助线法)或纬圆法(辅助圆法)。
4、作业。
1)、习题:学生讨论完成习题集35、36各小题。
2)、思考题:p672、3、4各题。
3)、预习:截交线集中疑难问题。
基本几何体(圆柱圆锥)。
一、曲面立体的定义。
二、圆柱。
三视图分析作图步骤:画图。
1、基准。
2、俯视图。
3、主视图。
4、左视图。
表面找点作图充分利用积聚性。
三、圆锥。
三视图分析作图步骤同六棱柱、画图。
表面点的投影充分利用顶点作辅助线和辅助面。
圆锥体积的说课稿篇十一
近日,在数学课上学习了圆锥体积的知识,我对这一部分内容产生了浓厚的兴趣。不仅仅是因为它与实际生活联系紧密,还因为通过学习圆锥体积,我体会到了数学的魅力和思维的乐趣。以下是我对圆锥体积课的开云官网app下载安装手机版 。
首先,学习圆锥体积课程,我深刻感受到数学的实用性。圆锥体积作为几何学中的一个重要概念,在我们日常生活中随处可见。比如,可乐瓶、冰淇淋蛋筒、充电宝外壳等等,它们的形状都属于圆锥体的范畴。通过学习圆锥体积,我能够计算出这些实物的容积,从而更好地理解它们的结构和运作原理。这使我深刻认识到了数学的生活意义,同时也加深了我对圆锥体积的兴趣。
其次,学习圆锥体积课程,我认识到数学的逻辑思维对问题解决的重要性。在计算圆锥体积的过程中,我们需要运用到诸如半径、高、底面积等多个数学概念。通过对这些概念的理解和运用,我能够逐步解决复杂的圆锥体积问题。而这一过程中,逻辑思维是不可或缺的。只有清晰的逻辑思路,才能保证我们在计算中不会出错。通过圆锥体积课程,我的逻辑思维能力得到了锻炼和提升,我相信这对于我今后的学习和工作都起到了积极作用。
此外,学习圆锥体积课程,我也认识到了数学的美妙之处。在圆锥体积的计算过程中,我们经常需要运用到一些复杂的数学公式,如勾股定理、三角函数等。这些公式不仅仅是为了省略繁琐的计算步骤,更是数学之美的展现。数学公式的简洁性和准确性使我为之惊叹,让我深深感受到了数学的魅力。通过学习圆锥体积,我也意识到,数学不仅仅是一门学科,更是一种思维方式和精神追求。
最后,学习圆锥体积课程,我不仅仅是为了应付考试,更是为了培养自己的创新思维和解决问题的能力。圆锥体积的计算并不总是有固定的公式可以套用,有时候我们需要运用到一些创新思维去解决特殊情况下的问题。通过学习圆锥体积,我逐渐摒弃了对模板化思维的依赖,开始注重培养自己的创新思维和解决问题的能力。我相信,这种能力对于我今后在学习和工作中遇到的各种问题都将起到积极的推动作用。
综上所述,学习圆锥体积课程是一次令我受益匪浅的经历。通过学习,我认识到了数学的实用性和美妙之处,同时也锻炼了我的逻辑思维和创新能力。我对圆锥体积的兴趣更加浓厚,并更多地将数学应用到实际生活中。相信利用所学知识,我能够在未来的学习和工作中取得更大的成功。
圆锥体积的说课稿篇十二
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用。
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件。
教学时间:一课时。
教学过程:。
一、复习。
1、圆锥有什么特征?(课件出示)。
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课。
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
三、新课。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的.图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
多指名说。
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
师:圆柱的体积等于什么?
生:等于“底面积×高”。
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高。
师:用字母应该怎样表示?
然后板书字母公式:v=1/3sh。
师:在这个公式里你觉得哪里最应该注意?
1/3×19×12=76((立方厘米))。
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积v?
3、已知圆锥的底面直径d和高h,如何求体积v?
4、已知圆锥的底面周长c和高h,如何求体积v?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)。
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大()。
2、圆锥的体积等于和它等底等高的圆柱体积的()。
3、正方体、长方体、圆锥体的体积都等于底面积×高。()。
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()。
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习。
圆锥体积的说课稿篇十三
2、学生说,教师板书:
圆锥圆柱。
特征1个底面2个。
扇形侧面展开长方形。
体积v=1/3shv=sh。
二、提出本节课练习的内容和目标。
三、课堂练习。
(一)、基本训练。
1、填空课本1----2(独立完成后校对)。
已知:底面积、直径、周长与高求体积(小黑板出示)。
(二)、综合训练:
1、判断。
(2)长方体、正方体、圆柱和圆锥的体积公式都可用v=sh。
(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升。
(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米。
2、应用:练习四第45题任选一题。
3、发展题:独立思考后校对。
四课堂小结:说说本节课的收获。
圆锥体积的说课稿篇十四
2、求下列各圆柱的体积。(口答)。
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。(板书:圆锥的体积)。
二、新课教学。
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)。
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
学生分组做实验,老师巡回指导。
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)。
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)。
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)。
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
圆锥体积的说课稿篇十五
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
圆锥体积公式的理解,并能运用公式求圆锥的体积。
圆锥体积公式的推导
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。
试验探究法 小组合作学习法
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
1课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景 激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究 合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底 等高
设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用 提升技能
2、口答题:题目内容见多媒体展示独立思考---抽生汇报---学生评议
设计意图通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四 第4、7题
2、坐在作业本上作业:练习四 第3题
圆锥体积的说课稿篇十六
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点: 通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么? (指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)、你认为圆锥体积的大小与它的什么有关?
(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)、通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)
师:用字母应该怎样表示? (v=1/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积=圆柱的体积×1/3
圆锥的体积=底面积×高×1/3
用字母表示v=1/3sh
圆锥体积的说课稿篇十七
1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。
2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。
3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。
【本文地址:http://www.pourbars.com/zuowen/19363116.html】