幂的乘方和积的乘方北师大版数学初一教案(精选19篇)

格式:DOC 上传日期:2023-12-14 06:29:09
幂的乘方和积的乘方北师大版数学初一教案(精选19篇)
时间:2023-12-14 06:29:09 小编:飞雪

教案是教师为备课和教学活动提供指导和参考的一种教学设计工具,一份好的教案能够保证教学内容的合理安排和教学目标的有效达成。制定教案不仅需要考虑教材内容和学生特点,还需要关注教学方法和评价方式。在编写教案时,我们应该注意语言简洁明了、结构合理且具有可操作性。教案的编写需要考虑到学生的认知特点和心理发展规律。以下是一些实用的教案示例,供大家参考和借鉴,提高自己的教学水平。

幂的乘方和积的乘方北师大版数学初一教案篇一

了解数据收集与整理的基本方法,学习设计调查问卷,体会并掌握数据收集的过程.

过程与方法。

收集数据的过程要有组织性,也要有认真的态度,积极参与,在与他人合作的过程中共同完成.

情感、态度与价值观。

体会数据在解决实际问题中的作用,逐步养成用数据说话的良好习惯.

【教学重难点】。

重点:掌握数据收集的基本方法,设计调查问卷.

难点:掌握数据收集的方法,会设计调查问卷.

【教学过程】。

一、创设情境,引入新课。

享有“杂交水稻之父”美称的袁隆平爷爷,为了寻找理想的水稻育种材料,他北至黑龙江,南到海南,观察了数不清的稻田,他对水稻生长的土壤肥沃情况、植株生长高度、植株的产量等各方面的数据进行了系统的收集,然后进行比较,最后筛选出了满意的材料,培育出了深受农民喜爱的杂交水稻.

要想发现一个事物的规律,就需要我们收集大量的数据,从中发现它们隐含的规律.

在生活中,我们会从报纸、电视或者网络上见到很多的数据,它们是信息的载体,我们的生活离不开数据,我们随时随地都在和数据打交道.本节课我们来学习如何收集数据.

问题展示:班级要举办元旦联欢晚会,如果由你来策划这次活动,你将如何安排节目?

学生合作探究,然后由代表发言.

师:要想解决这个问题,我们需要经历这样的活动过程:。

第一步:明确调查问题——同学们喜欢什么样的文艺节目;。

第二步:明确调查对象——全班每位同学;。

第三步:选择调查方法——采用调查问卷法;。

第四步:展开调查——每位同学填写问卷;。

第五步:记录结果,分析处理;。

第六步:得出结论.

师:此次调查问卷是如何设计的?你知道如何来设计调查问卷吗?

学生看书、交流,并举手回答.

幂的乘方和积的乘方北师大版数学初一教案篇二

4.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负数为________.

5.小于6的所有正整数的和是________.

6.点a在数轴上表示的数是+1,从点a出发,沿数轴向左平移3个单位长度到达点b,则点b所表示的数是________.

7.在数轴上,与表示-1的点距离为2的点所表示的数为________.

8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.

12.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置。

幂的乘方和积的乘方北师大版数学初一教案篇三

1.知识与技能:

(1)理解全等图形的概念和特征。

(2)能够认识和区分全等图形。

(3)对给出的图形,能够分割成全等图形。

2.数学思考、解决问题、情感与态度:

(1)经历认识全等图形、辨认全等图形、自主分割全等图形的学习过程,体验数学活动充满探索性和创造性,体现“学有用的数学”。

(2)通过师生的共同活动,来提高学生对图形的分析能力,发展他们的空间观念和积极参与的主动精神。

〖教材分析〗。

本节课是学习全等三角形的准备课,属于入门教学内容。本节课的活动内容较多,更注重对学生开放性思维的培养。要求教师通过创设与学生生活环境、知识背景密切相关的教学情境,帮助学生理解数学概念,寻求解决数学问题的方法。本节课倡导合作交流的学习气氛,通过师生互动、生生互动学习新知识。

〖学校及学生状况分析〗。

我校是甘肃省示范性中学,办学条件良好,有一栋实验楼,3间多媒体教室,每个班都有投影仪。绝大部分学生来自城市,有较好的学习基础。

〖教学设计〗。

(一)创设问题情境,引出新课。

生1:第三扇,因为上面的图案只有一种,而其他的门上都有多种图案。

生2:第三扇门上的图案全都一样,是三角形,并且大小也一样,所以我也认为是它。

师:是不是这样呢?我们继续来看。

点击第三扇门,继续播放:

大门打开,屏幕出现:“祝贺你向数学王国又进了一步,开始今天的学习吧!”字幕。

生:每组图片的图案一样,大小也一样。

师:非常好,我们继续来看。

(一大一小同一底片的相片、地图、多边形。)。

生:每组的图案一样,大小不一样。

师:那么下面这一组呢?

生1:在这组图形中,(5)和(11)两个小圆的大小形状一样,(7)和(10)两个“l”形也是大小形状一样的。

生2:还有两个锐角三角形(4)和(9),也是形状大小一样,其他的都不完全一样。

师:很好,刚才看到的图形中,有些是完全一样的,如果把它们叠在一起,它们就能够重合(在几何画板中演示),我们把这样的图形叫做全等图形(congruentfigures)。

今天我们就来研究全等图形(板书:全等图形)。

(二)讲授新课。

师:该如何定义全等图形呢?全等图形有什么特点?

生1:两个形状相同的图形叫全等图形。

生2:不对,应该是两个大小、形状都相同的图形叫全等图形。

生3:既然大小、形状都一样,那它们就一定能够完全重合在一起,所以我觉得“两个能够完全重合的图形称为全等图形”是它的定义。

生4:我同意他的意见,刚才两位同学所说的大小、形状都一样是全等图形的特点。

师:非常好,大家不但说出了全等图形的定义,还归纳出了它的特点,自己解决了问题。

那么,明确了什么是全等图形,大家看看下列这一组图片,它们是全等图形吗?

生:第一组的图形是全等的,第二组不是,因为它们的大小不同。

师:非常好,那么,观察我们的周围,在我们的生活中还有全等图形吗?

生1:窗户的每一块玻璃是全等的。

生2:图案、大小一样的地板砖。

生3:数学课本封面的图形。

生4:同一印章印的红印。

……。

(三)通过游戏,识别全等图形,归纳性质。

师:大家都非常正确地举出了全等的生活实例,我相信,每位同学都很好地掌握。

幂的乘方和积的乘方北师大版数学初一教案篇四

1.理解三种统计图各自的特点.

2.根据不同的问题选择适当的统计图.

过程与方法。

1.训练学生作图的技能.通过数据处理体会统计对决策的作用.

2.能够根据实际问题,选择适当的统计图清晰、有效地展示数据.

3.能从条形统计图、折线统计图、扇形统计图中获取信息.

情感、态度与价值观。

统计图是展示数据的重要方法,它也经常出现在媒体上.通过对三种统计图的认识、制作和选择进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切相关.

【教学重难点】。

重点:。

1.了解不同统计图的特点.

2.根据实际问题选择合适的统计图,培养统计观念.

难点:。

1.根据实际问题选择合适的统计图.

2.制作三种统计图并会从中获取有用的信息.

【教学过程】。

一、创设情境,引入新课。

师:在我们日常所接触的报刊、杂志及电视中,我们会经常见到一些统计图.最近,我在一本百科全书上就遇到了这样的情况:。

我们知道地球上有人类生存至少已有200万年的历史.在相当长的一段时间内,地球上的人口数量并不是很多,因为出生的人口和死亡的人口大致持平.然而随着农业耕作水平的不断提高和医疗条件的不断改善,世界人口开始急剧增加.目前,世界人口已超过70亿,平均每4天要出生100万以上的婴儿.在世界上的许多地方,人口的过快增长已造成了一系列严重的问题,例如食品短缺和城市过分拥挤等.

下面我们来看两幅统计图,了解一下世界人口在各大洲的百分比分布及世界人口增长的状况,也许能让我们很好地了解世界人口的状况.

课件出示相关图示.

生:从世界人口增长图中,我们可以看到公元1500年,人口达4.25亿;在公元1800年以前世界人口增长率的情况变化不大;但从公元1800年起,世界人口就开始迅速增长.当时医疗条件得到了改善,粮食产量增加以及工业革命的影响,世界人口才开始迅速增长.

师:这位同学回答得很好!从世界人口增长的情况还能联系到当时的历史背景,看来我们的统计图不仅是数据的展现,而且还是历史背景的再现.

生:从统计图中,我们还看到1950年~1990年这段时间人口翻了一番,而且从图上还可以预测出2020年世界人口将达到85亿.

师:我们再接着分析“世界人口的百分比分布图”.这是一个什么形式的统计图?

生:扇形统计图,条形统计图.

师:这个统计图是在扇形统计图的基础上综合改造得到的.根据这个统计图你又能得到何种信息呢?扇形统计图反映的是世界人口在七大洲的分布吗?联系我们前两节课学的内容,同学们可针对这个统计图讨论交流.

(教师此时可参与到学生的讨论中,看同学们如何认识这个统计图、从统计图中得到的信息是否准确.根据学生讨论交流的情况进行讲评.)。

生:扇形统计图是地球陆地面积分布统计图,条形统计图才是相应各大洲人口占世界人口的百分比.由此我们可以看出人口在地球上的分布是不均匀的,像亚洲陆地面积占地球陆地总面积的29.3%,可人口却占世界人口的63%;而北美洲陆地面积占地球陆地总面积的16.1%,人口只占世界人口的6.9%;南极洲陆地面积占地球陆地总面积的9.3%,那个地方却由于气候、地理位置等不同成为无人区.所以有些地区自然条件很差,人口很少,而有些地区土地肥沃,交通方便,人口相对集中.

师:很好!同学们已经能用数学中统计的眼光去观察、分析我们生存的这个世界.现在我们再来看某家报刊公布的反映世界人口情况的数据.

二、讲授新课。

师:请同学们观察下面的统计图,你能尽可能的获取信息吗?

生1:从统计图中,我们可知50年后,世界人口将达到90亿.

生2:我们还可以看到从1957年到2050年世界人口的变化情况.

幂的乘方和积的乘方北师大版数学初一教案篇五

教学目标:

1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;。

2.理解整式除法运算的算理,发展有条理的思考及表达能力。

教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。

教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。

教学方法:探索讨论、归纳总结。

一、复习回顾。

活动内容:复习准备。

1.同底数幂的除法。

同底数幂相除,底数不变,指数相减。

2.单项式乘单项式法则。

单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

二、情境引入。

活动内容:由生活常识“先见闪电,后闻雷鸣”的例子引出课题。

三、探究新知。

活动内容:

1.直接出示问题,由学生独立探究。

你能计算下列各题吗?如果能,说说你的理由。

一、学习目标:1、熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

2、理解整式除法运算的算理,发展有条理的思考及表达能力.

二、学习重点:多项式除以单项式的法则是本节的重点.

三、学习难点:整式除法运算的算理及综合运用。

幂的乘方和积的乘方北师大版数学初一教案篇六

1.(知识点1)为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒钟的心跳次数再乘6,你认为哪位同学的建议更具有代表性()。

a.甲同学b.乙同学c.两种建议都具有代表性d.两种建议都不合理。

2.(题型一)某市期末考试,甲校满分人数占本校总人数的4%,乙校满分人数占本校总人数的5%,则两校满分人数相比()。

a.甲校多于乙校b.甲校与乙校一样多c.甲校少于乙校d.不能确定。

幂的乘方和积的乘方北师大版数学初一教案篇七

1.某市期末考试中,甲校满分人数占4%,乙校满分人数占5%,比较两校满分人数()。

a.甲校多于乙校。

b.甲校与乙校一样多。

c.甲校少于乙校。

d.不能确定。

答案:d。

解析:解答:因为没有给出两校的总数,所以两校的满分人数也无法比较.

故选:d.

分析:由于缺少两校的总人数,因此无法判断.已知百分比比较多少时,要有总数,当总数不确定时无法比较大小.

2.班长对全班同学说:“请同学们投票,选举一位同学”,你认为班长在收集数据过程中的失误是()。

a.没有明确调查问题。

b.没有规定调查方法。

c.没有确定对象。

d.没有展开调查。

答案:a。

解析:解答:根据班长对全班同学说:“请同学们投票,选举一位同学”,而没有明确选举一位学习优秀,还是品质优秀,调查的问题不够明确。

故选:a.

幂的乘方和积的乘方北师大版数学初一教案篇八

1.理解同底数幂的乘法法则.

2.运用同底数幂的乘法法则解决一些实际问题.

3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.

【学习方法】自主探究与合作交流。

【学习重点】正确理解同底数幂的乘法法则.

【学习难点】正确理解和应用同底数幂的乘法法则.

幂的乘方和积的乘方北师大版数学初一教案篇九

北师大版数学七年级下第七章共分6节,本节《轴对称现象》是第一节,它在本章中起着起始新课的作用。本节通过大量的生动的生活中的实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值。同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面抽象的对称图形的学习作好铺垫工作。

二、学生起点分析。

学生的知识技能基础:学生在七年级上就对对称图形有所接触,如:扇形,圆,线段,角等,所以当今天学习了什么样的图形是对称图形时,学生识别起来应该顺理成章,在对对称定义的理解和应用上也应有水到渠成的感觉。只是在轴对称图形和两个图形成轴对称的概念上可能会产生一些模糊,这是教学中应该突破的地方。

学生生活经验基础:对称现象及对称图形在生活中存在大量实例,因此,对称对于学生来说应该不陌生,理解起来也应不困难。

三、教学任务分析。

本节主要是感知和体会轴对称现象,也要为以后学习图形对称的相关知识起到一个承接的作用。为此,本节课的具体教学目标制定如下:

1.感知生活中的轴对称现象,探索轴对称的共同特征。

2.通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴。

3.欣赏生活中的轴对称,体会其文化底蕴及价值,学为所用。

四、教学设计分析。

本节课设计了六个教学环节:课前准备、情境引入、合作学习、练习提高、课堂小结、布置作业。

第一环节课前准备。

活动内容:收集与对称相关的图片和实物(提前一周布置)。

活动目的:通过收集整理与对称相关的图片和实物,使同学们先对对称有一个整体的感性认识,并且初步了解对称在生活中大量存在,理解学习对称的必要性。

实际教学效果:通过分组合作,走向广阔的生活天地——田间、山村、工厂、社区等等,能让同学们充分感受到数学是对自然的浓缩与抽象,体会数学来源于生活;极大地激发同学们学习数学的兴趣和热情,同时也展现了同学们小组合作的团队精神。

第二环节情境引入。

活动内容:从各小组收集的图片中有代表性的选择一些,用投影仪演示。使学生能够形象直观地感受图形的对称。

幂的乘方和积的乘方北师大版数学初一教案篇十

1.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()。

a.角平分线b.中位线c.高d.中线。

2.下列说法错误的是()。

a.三角形的角平分线能把三角形分成面积相等的两部分。

b.三角形的三条中线,角平分线都相交于一点。

c.直角三角形三条高交于三角形的一个顶点。

d.钝角三角形的三条高所在直线的交点在三角形的外部。

3.角形的角平分线、中线和高()。

a.都是射线b.都是直线。

c.都是线段d.都在三角形内。

幂的乘方和积的乘方北师大版数学初一教案篇十一

2、知道方程解的概念,会检验一个数是否是某个方程的解;。

3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。

【学习流程】。

一、知识链接。

1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。

幂的乘方和积的乘方北师大版数学初一教案篇十二

学习目标:1.探索数量关系、运用符号表示规律,通过运算验证规律。

2.会用代数式表示简单问题中的数学规律。

学习重点:渗透有序思考的教学方法,提高学生的概括能力和推理能力。

学习难点:探索发现数学规律并能正确验证。

一、自主预习:

预习检测:

1.仔细观察下列各组数,按你发现的规律填空:

(1)1,2,3,4,,______,第n个数是______.

(2)2,4,6,8,,______,第n个数是______.

幂的乘方和积的乘方北师大版数学初一教案篇十三

1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)。

2.掌握平方差公式的应用.(重点)。

一、情境导入。

1.教师引导学生回忆多项式与多项式相乘的法则.

学生积极举手回答.

多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.

二、合作探究。

探究点:平方差公式。

【类型一】直接运用平方差公式进行计算。

幂的乘方和积的乘方北师大版数学初一教案篇十四

24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。

(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?

(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?

26.某单位在2013年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.

(1)若设参加旅游的员工共有m(m10)人,则甲旅行社的费用为元,

乙旅行社的费用为元;(用含m的代数式表示并化简)。

(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.

(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为.(用含有n的代数式表示并化简)

假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)

幂的乘方和积的乘方北师大版数学初一教案篇十五

3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。

〖过程与方法:〗。

通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。

〖情感态度与价值观:〗。

让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。

〖教学重点、难点:〗。

重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。

难点:正确判断哪些图形可以折叠成棱柱。

〖教学方法:〗。

引导发现法。

【基础知识精讲】。

1.棱柱的分类。

我们已经了解了棱柱,那么棱柱之间是否还有区别呢?

通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.

2.棱柱的特点。

若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?

(1)棱柱的上、下底面是完全相同且互相平行的多边形.

(2)棱柱的侧面都是矩形.

(3)棱柱的侧棱长都相等。

幂的乘方和积的乘方北师大版数学初一教案篇十六

1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计算公式.

2.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识,体会数形结合的思想方法.

【学习重点】。

能用代数式表示以前学过的运算律和计算公式,会用字母表示数.

【学习难点】。

体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.

行为提示:点燃激情,引发学生思考本节课学什么.

行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.

情景导入生成问题。

【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.

自学互研生成能力。

先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.

【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.

【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.

先独立完成下面的问题,然后再与同伴交流.

问题1(1)搭200个这样的正方形需要多少根火柴棒?

【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.

幂的乘方和积的乘方北师大版数学初一教案篇十七

了解并掌握数据收集的基本方法.

过程与方法。

在调查的过程中,要有认真的态度,积极参与.

情感、态度与价值观。

体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯.

【教学重难点】。

重点:掌握统计调查的基本方法.

难点:能根据实际情况合理地选择调查方法.

【教学过程】。

一、讲授新课。

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查.

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用.在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式.

在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(inspanidual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize).

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验.这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量.

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签.

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling).

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表.

学生小组合作、讨论,学生代表展示结果.

教师指导、评论.

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答.

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;。

(3)某种玉米种子的发芽率;。

(4)学校门口十字路口每天7:00~7:10时的车流量.

学生讨论,并举手回答.

学生讨论,并回答.

生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等.

师:很好!下列问题也适合采用普查方式来收集数据吗?

(1)了解某批次炮弹的杀伤半径;。

(2)某一天全国牛肉的平均价格;。

(3)一批罐头产品的质量检查;。

(4)对某条河的河水的污染情况的调查.

学生讨论、分析,并举手回答.

师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用.在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式.

二、例题讲解。

(2)对本年级同学是否喜欢某电视节目的调查结果不能代表。

幂的乘方和积的乘方北师大版数学初一教案篇十八

8.根据要求写出相应的式子:

(1)用字母表示加法结合律:__________;(2)用字母表示乘法对加法的分配律:__________.

命题点3用字母表示规律[热度:95%]。

9.④用棋子摆出如图3-1-1所示的一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()。

幂的乘方和积的乘方北师大版数学初一教案篇十九

1.经历切截几何体的活动过程,体会几何体在切截过程中的变化.

2.体会数学中的面与体之间的转换过程.

3.发展学生的空间观念.

【基础知识精讲】。

1.用平面截几方体出现的截面形状.

(1)用一个平面去截正方体,可能出现下面几种情况:(括号内的是出现的截面形状)。

图1—20。

点拨:由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.

注:长方体、棱柱的截面与正方体的截面有相似之处.

用平面截圆柱体,可能出现以下的几种情况.

图1—21。

分析:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,故相交得到是曲线,无法截出三角形.只能用平面平行和垂直于圆柱的底面截出这几种图形.

(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)。

(4)用平面去截球体,只能出现一种形状的截面——圆.

【本文地址:http://www.pourbars.com/zuowen/19367172.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map