长方体正方体的体积教案(专业15篇)

格式:DOC 上传日期:2023-12-14 09:35:20
长方体正方体的体积教案(专业15篇)
时间:2023-12-14 09:35:20     小编:JQ文豪

教案的编写应当符合教育教学的规范和原则。教案的编写要充分考虑评价方式和评价标准,确保学生的学习成果得到合理评价。高质量的教案范文可以帮助教师更好地解决教学问题和困惑。

长方体正方体的体积教案篇一

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

1.通过讲授,引导学生找出规律,总结出体积的公式。

3.培养学生积极思考、探索新知的思维品质。

正方体木块若干。

一、复习导入。

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授。

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。

(3)质疑:求长方体的体积公式需要知道什么条件?

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。v=abh=7×4×3=84(cm3)。

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业。

完成课本第31页“做一做”第1、2题。

四、课堂小结。

1.这节课,你有什么收获?

五、课后作业。

完成练习册中本课时练习。

长方体正方体的体积教案篇二

课题二:

教学要求  使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学过程。

一、创设情境。

填空:1、        叫做物体的体积。2、常用的体积单位有:     、     、     。3、计量一个物体的体积,要看这个物体含有多少个           。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

4   3   1。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1 立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

结论:长方体的体积=长×宽×高。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

2.小组学习--正方体体积的计算。

结论:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结。

五、课后实践。

做练习七的第5、7题。

长方体正方体的体积教案篇三

1.教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。

2.教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。

3.教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的计算方法,学生有一定的'难度。因此,我把“体积公式的推导过程”定为本节课的难点。

这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。

(一)设疑导入,揭示课题,明确任务。

理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。

(二)操作感知,探究规律,巩固深化。

小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:

第一步,做-----操作感知。

先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:

实验1:每排摆4个方木块,摆3排,方木块的总数是()个。

实验2:摆这样的2层,公用方木块()个。

实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块()个。

小组汇报实验结果,并填入表中:

长方体正方体的体积教案篇四

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

使学生理解长方体的.体积公式的推导过程,掌握长方体体积的计算方法。

理解长方体的体积公式的推导过程。

小正方体若干个 教法学法 合作法、讨论法

教学环节 第一次备课 动态修改

这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)

1、学生猜想

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

大胆猜测长方体的体积怎样计算

学生猜想:长方体的体积=长宽高

2、动手实践操作

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)

(1)提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习

(3)小组派代表汇报

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

长方体正方体的体积教案篇五

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

一、创设情境。

填空:1、叫做物体的体积。2、常用的体积单位有:、、。3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的`体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

431。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂。

五、课后实践。

做练习七的第5、7题。

长方体正方体的体积教案篇六

教学内容:

教学目标:

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

教学重点:

正方体和长方体体积的计算方法。

教学难点:

教具:

长、正方体模型、课件、长、正方体形状的纸盒等。

教学过程:

创设情境,导入新课。

出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?

教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。

揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)。

操作探究,发现规律。

学生按照要求用正方体搭出四个不同的长方体并编号。

让学生观察,并作小组交流。

这些长方体的长宽高各是多少?

用了几个小正方体?不数,你怎样计算小正方体的个数?

长方体的体积是多少?和计算小正方体的个数的'方法比一比。

根据所搭的长方体填表:(表格略)。

根据表格,引导分析,发现规律。

比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?

再次探索,验证猜想。

出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。

如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。

引导概括,得出公式。

交流的出结论:

v=abh。

启发引导。

让学生尝试,再交流得出结论:

应用拓展,巩固练习。

做“试一试”

先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。

做“练一练”第1题。

观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。

做“练一练”第2题。

先让学生选择几个式子说说其表示的意思,再口算。

课堂作业:做练习四第2题。

课后作业:

完成练习四第1、3题。

长方体正方体的体积教案篇七

1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

3、运用体积计算公式解决一些简单的实际问题。

4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

2、教学重点/难点。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:理解长方体体积公式的意义。

3、教学用具。

教学课件、一个长方体拼制模型。

4、标签。

一、启发谈话,激趣引入。

二、学习“体积”、“体积单位”的概念。

2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?

演示书上的实验,得出:土豆占的空间小,石块占的空间大。

4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。

5、学生汇报:

(1)常用的体积单位。

(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。

(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。

6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。

得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。

2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。

3、小组合作:学生四人一小组操作并做好实验记录。

思考:

(1)每排摆几个?每层摆了几排?摆了几层?

(2)一共摆了多少个小正方体?

(3)这个图形的体积是多少?

4、汇报实验结果。

每排个数。

每层排数。

层数。

小正方体个数。

让学生观察表格中填写的各数,你发现了什么?

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

6、学生汇报,交流,板书。

读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。

生:正方体是长、宽、高都相等的特殊的长方体。

师:根据这种关系,你能推导出正方体的体积公式吗?

2、师生共同归纳:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a×a×a=a3。

师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。

3、应用公式:

例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。

回顾一下,今天的学习大家有什么收获?

板书。

物体所占空间的大小,叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

v=abh。

正方体的体积=棱长×棱长×棱长。

v=a×a×a=a3。

长方体正方体的体积教案篇八

1、说课内容。

本节所讲的内容是义务教育课程标准实验教科书教材五年级下册第三单元41页到43页有关长方体和正方体的体积和体积单位,教学内容属于新授课,授课时数为1课时。

2、教学内容的地位和作用。

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。在第二册的认识图形中,虽然已经接触到长方体和正方体,但那只是直观现象的认识,要上升到理性认识还是有一定难度的。

本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念常用的体积单位,这节课要学习长方体和正方体的体积和有关的体积单位。

学习长方体和正方体的体积具有一定的实用价值,通过学生联系实际的操作活动,学习一些测量计算知识,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题。

3、教学目标的确定。

根据前面所述,长方体和正方体的体积计算是今后继续学习几何知识的基础。因此,本节课应当让学生了解长方体和正方体的体积公式的来源,理解它的意义,熟练地运用公式解决一些实际问题。学习一些研究问题的方法,通过学习知识,发展学生的思维能力,逐渐形成他们的空间观念。

4、教学重点、难点。

本节的两部分内容应当以第一部分为重点,长方体的体积计算中、重点理解体积公式的意义,并运用公式解决实际问题,难点理解公式的意义。

为了突出重点、突破难点,圆满地完成教学任务取得良好的教学效果,我采用了直观教学法,让学生观察图形填表,归纳出长方体体积的计算公式充分运用知识的迁移规律,引导学生掌握新知识、学习正方体的体积计算时,可以把长方体的体积计算方法直接迁移过来,让学生独立地得出正方体的体积公式。

三、教学过程设计。

教学我只安排了复旧引新、创设情境、激情引趣、揭示课题、操作想象、推导、公式。依据规律、归纳公式、利用关系、类推公式、巩固练习、运用公式、全课总结六环节。

(一)复旧引新、创设情境。

任何新知识都是在有知识系为依托,因此在复习中我设计的习题为本课做好铺垫。

什么是体积?常用的体积单位有那些?出示1立方分米、1立方厘米(教师出示体积单位的模型)完成此题,使学生进一步树立空间观念为这节课做好铺垫。

(二)激情引趣、揭示课题。

一节课教学效果如何?与学生学习的心理状态有关根据学生的心理特点。我联系实际生活中经常遇到计算长方体和正方体的体积问题,如果计量池水的体积,还能切开数吗?(切开数)这种方法在实际生活中是行不通的,那么怎么办?这就是今天这节课我们要学习的(长方体和正方体的体积计算)揭示课题,激励学生上进好学,充分发挥学生的主观能动性,让他们积极主动,生动活泼地探究新知。

(三)、探索活动、推导公式。

学生口答结果老师依次板书在表格中,通过观察表交流,讨论学生不难发现其中的规律。学生回答后,教师板书整理。

如长×宽×高=体积。

2×3×2=12。

4×1×3=12。

6×1×2=12。

2×2×3=12。

从而,归纳出长方体体积计算公式:

v=abh。

进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?

(四)、利用关系、类推公式。

提问:4号长方体的长、宽、高有何特点?这种长方体又叫什么?它的体积怎么计算?学生进行讨论交流。

(五)、巩固练习、运用公式。

练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式、我设计了多层次的练习。

2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。

3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。

(六)、全课总结、

1、让学生说说这节课学习了什么。

2、教师总结。

这样设计的目的对新知识进行一次全面的回顾梳理,内化的过程、同时培养学生总结概括能力。

长方体正方体的体积教案篇九

课题二:

教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学过程 。

一、创设情境。

填空:1、       叫做物体的体积。2、常用的体积单位有:    、    、    。3、计量一个物体的体积,要看这个物体含有多少个          。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

4  3  1。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结。

五、课后实践。

做练习七的第5、7题。

长方体正方体的体积教案篇十

学习内容:

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

教学难点:

教具运用:

正方体木块若干。

教学过程:

一、复习导入。

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。

(3)质疑:求长方体的体积公式需要知道什么条件?

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a•a•a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。v=abh=7×4×3=84(cm3)。

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业。

完成课本第31页“做一做”第1、2题。

四、课堂小结。

1.这节课,你有什么收获?

五、课后作业。

完成练习册中本课时练习。

板书设计:

v=abh。

v=a•a•a=a3。

长方体正方体的体积教案篇十一

3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

理解长方体和正方体体积公式的推导过程.

课件,若干个1立方厘米小正方块。

1立方厘米的正方体16块。

一、激情导入。

1、复习引入。

师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。

2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的`学习目标。

3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。

二、民主导学。

(学情欲设)。

生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。

生2、可以量一量。

生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。

老师认为这个提议不错,你们认为呢?

师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。

任务呈现:

用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:

出示表格。学生四人一小组,每组一张表格。

(厘米)。

(厘米)。

(厘米)。

师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。

自主学习。

学生活动,师巡视。

展示交流。

师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?

学生黑板前展示表格,并做详细汇报。

引导学生观察表格,

师:观察表格中的数据,从中你能发现什么呢?

师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。

任务2、继续验证。

课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。

1、长4厘米,宽1厘米,高1厘米。

2、长4厘米、宽3厘米、高1厘米。

3、长4厘米、宽3厘米、高2厘米。

师:那究竟对不对呢?让我们再来摆一摆。

学生小组讨论,动手操作,指名一生上台操作。师巡视。

师:和我们之前的猜想一样吗?

v=abh。

课件出示:

师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。

师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

学生汇报:

因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

课件出示正方体,出示公式。

师:写的时候,3要写在a的右上角,并且要写的小一些。

小训练:完成例2,在练习本上完成,集体订正。

三、巩固应用。

1、口答题。

2、判断题。

3、解答题。

四、拓展延伸。

师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看。

师:这个算式表示什么意思呢?

出示:

品名:正方体收纳凳。

尺寸:30×30×30。

材质:涤纶+pp不织布+纤维板。

颜色:黑白。

师:你能看懂这个说明书吗?

师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。

五、课堂小结。

师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

长方体正方体的体积教案篇十二

1. 教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。

2. 教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。

3 . 教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的.计算方法,学生有一定的难度。因此,我把“体积公式的推导过程”定为本节课的难点。

这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。

(一)设疑导入,揭示课题,明确任务

理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。

(二)操作感知,探究规律,巩固深化

小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:

第一步,做-----操作感知

先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:

实验1:每排摆4个方木块,摆3排,方木块的总数是( )个。

实验2:摆这样的2层,公用方木块( )个。

实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块( )个。

小组汇报实验结果,并填入表中:

长方体正方体的体积教案篇十三

教材分析:

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

教学目标:

1、结合具体***作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

学情分析

学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

教学手段:学生动手***作,同时配合多媒体课件演示.

这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。

(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

(二)***作想象,探索公式。

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验***作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

具体的过程是:

(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

(6)利用关系,类推公式

通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验***作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

(三)巩固练习,扩展应用

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作***作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

3.完成练习七第1题,让学生运用公式计算。

4.完成练习七的第7题,要注意这道题算式的运算顺序。

5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。

学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手***作和解决实际问题的能力。

让学生说说这节课学习了什么?还有什么疑问。这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

长方体正方体的体积教案篇十四

教学中,我注意了培养学生的数学语言能力,重视学生的口头表达,同学们在操作活动中产生了大量的思维语言,小学生的特点就是急于把这些想法告诉老师和同学。我在教学时安排了边摆边记录,再汇报的活动,让学生养成及时记录实验数据的习惯,同时为整理、分析数据准备好必要的材料,更有利于有条理地分析汇报,从而提高语言表达能力。

教学过程就是学生实现认知目标的过程,在这个过程中,给学生思维空间,给学生自主探索的机会,让学生多维多向思考,同时实现师生互动,也就遵循了学生的认知规律,使学生获得了最佳的认知效果。

通过本节课的教学,我认识将主动权还给学生的必要性,这样更能让学生充分体会到学习的乐趣,并能使他们获得成就感。教学是课堂创新和开发的过程,在以后的教学中,()需要我付出更多的心血来激发学生的潜能。

有好的方面,但仍有许多不足,下面就我上的这一节课存在的问题从以下几个方面自评一下。

第一、课件设计还不够完美。如:在关闭flash课件的主页面后,出示幻灯片时应设计一个封面,这样就自然些,而不会显得太突然,而我却将一个封面删取了;还有我后面还设计了一个拓展性的题就是利用长方体和正方体组成的一个动画机器人,让同学们想一想如何知道它的体积,并且还有分解后的图。这道题按我原来的设计是个很能调动学生积极性的题。但时间计划不周这道题没有出示出来,深感遗憾!

第二、教学过程中细心程度不够,有些慌。在随意展示学生填好的表时没有先认真看一下,结果出现学生在长、宽、高数值后面带的单位是cm3而不是cm。

第三、数学教学理论,数学教材钻研的纵深度不够。对数学理论的掌握,数学教材的把握火候不到,对数学有些专业性术语掌握的还有些欠妥。

将本文的word文档下载到电脑,方便收藏和打印。

长方体正方体的体积教案篇十五

1、引导学生通过观察长方体的长、宽、高和正方体的棱长,再应用公式计算,解决生活中的.实际问题。

2、通过练习,提高学生解决问题的能力。

正确理解体积。

一、复习引入。

1、复习上一节课学过的知识。

2、应用公式计算体积。

(1)一个长方体,长8厘米,宽6厘米,高4厘米,求体积是多少?

(2)一个正方体,棱长是9厘米,体积是多少?

二、练习(教材43页练习题)。

1、第5题要求学生认真读题,注意最后的问题是需要多少升水?计算出来的体积单位是立方分米,要换算成升。

2、第6题要求独立思考练习,与同伴交流,说一说你是怎么想的。

3、第7题教师指导练习,结合书上的图想一想,再说一说,最后算一算。提示,正方体的每一条棱长都相等,先确定棱长。

4、第9题。

实践活动(见教材)。

三、作业练习。

完成配套练习。

【本文地址:http://www.pourbars.com/zuowen/19416476.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map