教案是教育教学活动中的重要组成部分,是教师进行教学设计的依据和指南。它包含了教学目标、教学内容、教学方法、教学过程和评价等内容,有助于教师系统地组织教学活动,提高教学效果。教案的编写要关注学生的学习兴趣和主动性,培养他们的学习动力。以下是小编为大家整理的教案范例,供大家参考。
幂的乘方和积的乘方北师大版数学初一教案篇一
1.理解三种统计图各自的特点.
2.根据不同的问题选择适当的统计图.
过程与方法。
1.训练学生作图的技能.通过数据处理体会统计对决策的作用.
2.能够根据实际问题,选择适当的统计图清晰、有效地展示数据.
3.能从条形统计图、折线统计图、扇形统计图中获取信息.
情感、态度与价值观。
统计图是展示数据的重要方法,它也经常出现在媒体上.通过对三种统计图的认识、制作和选择进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切相关.
【教学重难点】。
重点:。
1.了解不同统计图的特点.
2.根据实际问题选择合适的统计图,培养统计观念.
难点:。
1.根据实际问题选择合适的统计图.
2.制作三种统计图并会从中获取有用的信息.
【教学过程】。
一、创设情境,引入新课。
师:在我们日常所接触的报刊、杂志及电视中,我们会经常见到一些统计图.最近,我在一本百科全书上就遇到了这样的情况:。
我们知道地球上有人类生存至少已有200万年的历史.在相当长的一段时间内,地球上的人口数量并不是很多,因为出生的人口和死亡的人口大致持平.然而随着农业耕作水平的不断提高和医疗条件的不断改善,世界人口开始急剧增加.目前,世界人口已超过70亿,平均每4天要出生100万以上的婴儿.在世界上的许多地方,人口的过快增长已造成了一系列严重的问题,例如食品短缺和城市过分拥挤等.
下面我们来看两幅统计图,了解一下世界人口在各大洲的百分比分布及世界人口增长的状况,也许能让我们很好地了解世界人口的状况.
课件出示相关图示.
生:从世界人口增长图中,我们可以看到公元1500年,人口达4.25亿;在公元1800年以前世界人口增长率的情况变化不大;但从公元1800年起,世界人口就开始迅速增长.当时医疗条件得到了改善,粮食产量增加以及工业革命的影响,世界人口才开始迅速增长.
师:这位同学回答得很好!从世界人口增长的情况还能联系到当时的历史背景,看来我们的统计图不仅是数据的展现,而且还是历史背景的再现.
生:从统计图中,我们还看到1950年~1990年这段时间人口翻了一番,而且从图上还可以预测出2020年世界人口将达到85亿.
师:我们再接着分析“世界人口的百分比分布图”.这是一个什么形式的统计图?
生:扇形统计图,条形统计图.
师:这个统计图是在扇形统计图的基础上综合改造得到的.根据这个统计图你又能得到何种信息呢?扇形统计图反映的是世界人口在七大洲的分布吗?联系我们前两节课学的内容,同学们可针对这个统计图讨论交流.
(教师此时可参与到学生的讨论中,看同学们如何认识这个统计图、从统计图中得到的信息是否准确.根据学生讨论交流的情况进行讲评.)。
生:扇形统计图是地球陆地面积分布统计图,条形统计图才是相应各大洲人口占世界人口的百分比.由此我们可以看出人口在地球上的分布是不均匀的,像亚洲陆地面积占地球陆地总面积的29.3%,可人口却占世界人口的63%;而北美洲陆地面积占地球陆地总面积的16.1%,人口只占世界人口的6.9%;南极洲陆地面积占地球陆地总面积的9.3%,那个地方却由于气候、地理位置等不同成为无人区.所以有些地区自然条件很差,人口很少,而有些地区土地肥沃,交通方便,人口相对集中.
师:很好!同学们已经能用数学中统计的眼光去观察、分析我们生存的这个世界.现在我们再来看某家报刊公布的反映世界人口情况的数据.
二、讲授新课。
师:请同学们观察下面的统计图,你能尽可能的获取信息吗?
生1:从统计图中,我们可知50年后,世界人口将达到90亿.
生2:我们还可以看到从1957年到2050年世界人口的变化情况.
幂的乘方和积的乘方北师大版数学初一教案篇二
1.理解同底数幂的乘法法则.
2.运用同底数幂的乘法法则解决一些实际问题.
3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.
【学习方法】自主探究与合作交流。
【学习重点】正确理解同底数幂的乘法法则.
【学习难点】正确理解和应用同底数幂的乘法法则.
幂的乘方和积的乘方北师大版数学初一教案篇三
4.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负数为________.
5.小于6的所有正整数的和是________.
6.点a在数轴上表示的数是+1,从点a出发,沿数轴向左平移3个单位长度到达点b,则点b所表示的数是________.
7.在数轴上,与表示-1的点距离为2的点所表示的数为________.
8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.
12.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置。
幂的乘方和积的乘方北师大版数学初一教案篇四
学习目标:1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.了解单项式、多项式、整式产生的背景,理解单项式、多项式的相关概念。
4.进一步培养学生认识特殊与一般的辩证关系。
学习重点:单项式、多项式、整式概念的理解。
学习难点:单项式的系数、次数;多项式的项数、次数等概念。
一、自主预习:
预习内容:
预习检测:。
1.如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c。这个箱子露在外面的表面积是;它项式,它的次数是。
2.下面两组式子各有什么特点?
我的疑惑:
二、合作探究:
幂的乘方和积的乘方北师大版数学初一教案篇五
【学习目标】:
1、理解数轴的三要素,能画数轴。
2、能将有理数表示在数轴上,同时也能读出数轴的点所表示的数。
3、能理解数轴上的点表示的数的大小关系,并利用它来比较数的大小。
【学习重点】:认识数轴,画数轴,并利用数轴比较数的大小。
【候课朗读】:有理数的分类。
【学习过程】:
一、学习准备。
1、整数和分数统称为_________;零既不是_________,也不是_________,但它是_________。
2、正数,负数通常可以用来表示具有_________意义的量,请同学们读出教材p43三个温度计所表示的温度,分别为______、______、______,你能在温度计上标出150c,-200c的位置吗?若把温度计水平放置(或把书横放过来),我们可以发现温度计上既有正数,零,也有_______。因此我们也能将一个有理数用图形表示出来。
二、解读教材。
3、数轴的概念。
画一条水平直线,在直线上取一点表示_________(叫做_________),选取某一长度作为_________,规定直线上_________的方向为_________(用箭头标出),就得到下面的数轴。
幂的乘方和积的乘方北师大版数学初一教案篇六
了解数据收集与整理的基本方法,学习设计调查问卷,体会并掌握数据收集的过程.
过程与方法。
收集数据的过程要有组织性,也要有认真的态度,积极参与,在与他人合作的过程中共同完成.
情感、态度与价值观。
体会数据在解决实际问题中的作用,逐步养成用数据说话的良好习惯.
【教学重难点】。
重点:掌握数据收集的基本方法,设计调查问卷.
难点:掌握数据收集的方法,会设计调查问卷.
【教学过程】。
一、创设情境,引入新课。
享有“杂交水稻之父”美称的袁隆平爷爷,为了寻找理想的水稻育种材料,他北至黑龙江,南到海南,观察了数不清的稻田,他对水稻生长的土壤肥沃情况、植株生长高度、植株的产量等各方面的数据进行了系统的收集,然后进行比较,最后筛选出了满意的材料,培育出了深受农民喜爱的杂交水稻.
要想发现一个事物的规律,就需要我们收集大量的数据,从中发现它们隐含的规律.
在生活中,我们会从报纸、电视或者网络上见到很多的数据,它们是信息的载体,我们的生活离不开数据,我们随时随地都在和数据打交道.本节课我们来学习如何收集数据.
问题展示:班级要举办元旦联欢晚会,如果由你来策划这次活动,你将如何安排节目?
学生合作探究,然后由代表发言.
师:要想解决这个问题,我们需要经历这样的活动过程:。
第一步:明确调查问题——同学们喜欢什么样的文艺节目;。
第二步:明确调查对象——全班每位同学;。
第三步:选择调查方法——采用调查问卷法;。
第四步:展开调查——每位同学填写问卷;。
第五步:记录结果,分析处理;。
第六步:得出结论.
师:此次调查问卷是如何设计的?你知道如何来设计调查问卷吗?
学生看书、交流,并举手回答.
幂的乘方和积的乘方北师大版数学初一教案篇七
1.知识与技能:
(1)理解全等图形的概念和特征。
(2)能够认识和区分全等图形。
(3)对给出的图形,能够分割成全等图形。
2.数学思考、解决问题、情感与态度:
(1)经历认识全等图形、辨认全等图形、自主分割全等图形的学习过程,体验数学活动充满探索性和创造性,体现“学有用的数学”。
(2)通过师生的共同活动,来提高学生对图形的分析能力,发展他们的空间观念和积极参与的主动精神。
〖教材分析〗。
本节课是学习全等三角形的准备课,属于入门教学内容。本节课的活动内容较多,更注重对学生开放性思维的培养。要求教师通过创设与学生生活环境、知识背景密切相关的教学情境,帮助学生理解数学概念,寻求解决数学问题的方法。本节课倡导合作交流的学习气氛,通过师生互动、生生互动学习新知识。
〖学校及学生状况分析〗。
我校是甘肃省示范性中学,办学条件良好,有一栋实验楼,3间多媒体教室,每个班都有投影仪。绝大部分学生来自城市,有较好的学习基础。
〖教学设计〗。
(一)创设问题情境,引出新课。
生1:第三扇,因为上面的图案只有一种,而其他的门上都有多种图案。
生2:第三扇门上的图案全都一样,是三角形,并且大小也一样,所以我也认为是它。
师:是不是这样呢?我们继续来看。
点击第三扇门,继续播放:
大门打开,屏幕出现:“祝贺你向数学王国又进了一步,开始今天的学习吧!”字幕。
生:每组图片的图案一样,大小也一样。
师:非常好,我们继续来看。
(一大一小同一底片的相片、地图、多边形。)。
生:每组的图案一样,大小不一样。
师:那么下面这一组呢?
生1:在这组图形中,(5)和(11)两个小圆的大小形状一样,(7)和(10)两个“l”形也是大小形状一样的。
生2:还有两个锐角三角形(4)和(9),也是形状大小一样,其他的都不完全一样。
师:很好,刚才看到的图形中,有些是完全一样的,如果把它们叠在一起,它们就能够重合(在几何画板中演示),我们把这样的图形叫做全等图形(congruentfigures)。
今天我们就来研究全等图形(板书:全等图形)。
(二)讲授新课。
师:该如何定义全等图形呢?全等图形有什么特点?
生1:两个形状相同的图形叫全等图形。
生2:不对,应该是两个大小、形状都相同的图形叫全等图形。
生3:既然大小、形状都一样,那它们就一定能够完全重合在一起,所以我觉得“两个能够完全重合的图形称为全等图形”是它的定义。
生4:我同意他的意见,刚才两位同学所说的大小、形状都一样是全等图形的特点。
师:非常好,大家不但说出了全等图形的定义,还归纳出了它的特点,自己解决了问题。
那么,明确了什么是全等图形,大家看看下列这一组图片,它们是全等图形吗?
生:第一组的图形是全等的,第二组不是,因为它们的大小不同。
师:非常好,那么,观察我们的周围,在我们的生活中还有全等图形吗?
生1:窗户的每一块玻璃是全等的。
生2:图案、大小一样的地板砖。
生3:数学课本封面的图形。
生4:同一印章印的红印。
……。
(三)通过游戏,识别全等图形,归纳性质。
师:大家都非常正确地举出了全等的生活实例,我相信,每位同学都很好地掌握。
幂的乘方和积的乘方北师大版数学初一教案篇八
第一版块:(前奏版)。
第一环节:课前热身(复习提问):
回顾一下我们在小学学过哪些数呢?这些数能满足我们生活的需要吗?
还会有新的数吗?
第二板块:(启动版)。
第二环节:引入新课:(导学提问)。
1.观察第二章章前图,讨论并回答下列问题:
(1)世界最高峰———珠穆朗玛峰海拔高8848米表示什么?
(2)吐鲁番盆地在地形图上标着—155米表示什么?
(3)从全国主要城市天气预报表中,可以看到哪些新数?这里“—”号表示什么呢?
(4)在测量温度时用到了温度计,那么温度计又是以什么为基准呢?
第三环节:展示目标。
一.学习目标:
(1)会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量.
重点:正数、负数的概念:
第三版块:(核心版)。
第四环节:自主学习合作探究。
1.见书p37如何求出每个队的最后得分,与同伴进行交流。
2.完成p38表格。
3.见p39议一议。
4.正数、负数的概念:
像______________叫做正数,____________.
像______________叫做负数。
零______________。
5.例题:见书p40例1。
6.做一做:见书p40将所学数进行分类,并与同伴进行交流。
______________________统称为有理数。
8.有理数分类:
第五环节:展示汇报小组展示。
第四板块(强化版)。
第六环节:
1分钟记忆:用自己的话说一说有理数的概念。
第七环节:反馈检测。
自我检测:。
1.如果规定向东为正,那么向西走5m记作____.
3.某食品包装袋上标有“净含量385g+5g”,这包食品的合格净含量范围是___g至___g。
4.下列说法中正确的是()。
(a)正数和负数统称有理数(b)0是整数,但不是正数。
(c)一个数不是正数就是负数(d)整数又叫自然数。
幂的乘方和积的乘方北师大版数学初一教案篇九
学习目标:1.探索数量关系、运用符号表示规律,通过运算验证规律。
2.会用代数式表示简单问题中的数学规律。
学习重点:渗透有序思考的教学方法,提高学生的概括能力和推理能力。
学习难点:探索发现数学规律并能正确验证。
一、自主预习:
预习检测:
1.仔细观察下列各组数,按你发现的规律填空:
(1)1,2,3,4,,______,第n个数是______.
(2)2,4,6,8,,______,第n个数是______.
幂的乘方和积的乘方北师大版数学初一教案篇十
了解并掌握数据收集的基本方法.
过程与方法。
在调查的过程中,要有认真的态度,积极参与.
情感、态度与价值观。
体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯.
【教学重难点】。
重点:掌握统计调查的基本方法.
难点:能根据实际情况合理地选择调查方法.
【教学过程】。
一、讲授新课。
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查.
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用.在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式.
在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(inspanidual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize).
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验.这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量.
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签.
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling).
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表.
学生小组合作、讨论,学生代表展示结果.
教师指导、评论.
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答.
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;。
(3)某种玉米种子的发芽率;。
(4)学校门口十字路口每天7:00~7:10时的车流量.
学生讨论,并举手回答.
学生讨论,并回答.
生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等.
师:很好!下列问题也适合采用普查方式来收集数据吗?
(1)了解某批次炮弹的杀伤半径;。
(2)某一天全国牛肉的平均价格;。
(3)一批罐头产品的质量检查;。
(4)对某条河的河水的污染情况的调查.
学生讨论、分析,并举手回答.
师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用.在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式.
二、例题讲解。
(2)对本年级同学是否喜欢某电视节目的调查结果不能代表。
幂的乘方和积的乘方北师大版数学初一教案篇十一
1.理解两点确定一条直线的事实。
2.掌握直线、射线、线段的表示方法。
3.理解直线、射线、线段的联系与区别。
【学习重难点】。
重点:理解并掌握直线的性质,会用字母表示图形和根据语言描述画出图形。
难点:根据语言描述画出图形,建立图形和语言之间的联系。
【自主学习】。
1.直线的基本性质是。
2.点一般用表示。
3.直线的表示方法有两种:(1)用表示;(2)用表示。
4.射线的表示方法有两种:(1)用表示;(2)用表示。
5.线段的表示方法有两种:(1)用表示;(2)用表示。
6.点与直线的位置关系有两种情况:分别是和。
7.叫做两条直线相交。
探究一直线的基本性质。
1.操作:如果你想将一根木条固定在墙上,至少需要几个钉子?动手试试看。
(1)请你先用一个钉子,是否可以转动木条?这说明了什么?
(2)请你再用两个钉子,是否可以转动木条?这又说明了什么?
(3)猜想:如果将木条抽象成直线,将钉子抽象成点,你可以得出什么结论?
2.直线的基本性质有两层含义:(1)(2)。
3.思考:你还能从生活中举出应用直线基本性质的例子吗?试试看。
探究二直线、射线、线段的区别与联系。
请同学们先自己画出一条直线,一条射线,一条线段,然后小组合作讨论它们的区别与联系,并将讨论的结果填入下表。
幂的乘方和积的乘方北师大版数学初一教案篇十二
教学要点:
1能用尺规作一个角等于已知角。
2.能利用尺规作角的和、差、倍。
教学环节:
第一环节作一个角等于已知角的作法示范。
第二环节能利用尺规作角的和、差、倍。
第三环节巩固,练习与延伸。
第四环节布置作业。
教学设计。
教学目的:
1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识。
2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学难点:作图步骤和作图语言的叙述,及作角的综合应用。
教学方法:猜想、实践法。
教学过程:
一问题的提出:
如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为ab。
(1)请过点c画出与ab平行的另一条边。
(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?
二.新课:。
内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)。
(一)用尺规作一个角等于已知角.
幂的乘方和积的乘方北师大版数学初一教案篇十三
8.根据要求写出相应的式子:
(1)用字母表示加法结合律:__________;(2)用字母表示乘法对加法的分配律:__________.
命题点3用字母表示规律[热度:95%]。
9.④用棋子摆出如图3-1-1所示的一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()。
幂的乘方和积的乘方北师大版数学初一教案篇十四
3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
〖过程与方法:〗。
通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
〖情感态度与价值观:〗。
让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
〖教学重点、难点:〗。
重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点:正确判断哪些图形可以折叠成棱柱。
〖教学方法:〗。
引导发现法。
【基础知识精讲】。
1.棱柱的分类。
我们已经了解了棱柱,那么棱柱之间是否还有区别呢?
通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.
2.棱柱的特点。
若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?
(1)棱柱的上、下底面是完全相同且互相平行的多边形.
(2)棱柱的侧面都是矩形.
(3)棱柱的侧棱长都相等。
幂的乘方和积的乘方北师大版数学初一教案篇十五
1.经历切截几何体的活动过程,体会几何体在切截过程中的变化.
2.体会数学中的面与体之间的转换过程.
3.发展学生的空间观念.
【基础知识精讲】。
1.用平面截几方体出现的截面形状.
(1)用一个平面去截正方体,可能出现下面几种情况:(括号内的是出现的截面形状)。
图1—20。
点拨:由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
注:长方体、棱柱的截面与正方体的截面有相似之处.
用平面截圆柱体,可能出现以下的几种情况.
图1—21。
分析:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,故相交得到是曲线,无法截出三角形.只能用平面平行和垂直于圆柱的底面截出这几种图形.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)。
(4)用平面去截球体,只能出现一种形状的截面——圆.
幂的乘方和积的乘方北师大版数学初一教案篇十六
2、知道方程解的概念,会检验一个数是否是某个方程的解;。
3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。
【学习流程】。
一、知识链接。
1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。
幂的乘方和积的乘方北师大版数学初一教案篇十七
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;。
3.会用科学记数法表示较大的数.
教学重点。
1.有理数乘方的意义,求有理数的正整数指数幂;。
2.用科学记数法表示较大的数.
教学难点有理数乘方结果(幂)的符号的确定.
教学过程(教师)。
问题引入。
乘方的有关概念。
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
幂的乘方和积的乘方北师大版数学初一教案篇十八
1.三口之家,冬天饮用桶装矿泉水的情况如下表:
日期星期一星期二星期三星期四星期五星期六星期日
桶中剩水4.5加仑3.9加仑3.5加仑3.1加仑2.5加仑2加仑1.5加仑。
(1)根据表中的数据,说一说哪些量是在发生变化?自变量和因变量各是什么?
(2)能说出下周一桶中还有多少水吗?
(3)根据表格中的数据,说一说星期一到星期日,桶中的水是如何变化的.
幂的乘方和积的乘方北师大版数学初一教案篇十九
1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)。
2.掌握平方差公式的应用.(重点)。
一、情境导入。
1.教师引导学生回忆多项式与多项式相乘的法则.
学生积极举手回答.
多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.
二、合作探究。
探究点:平方差公式。
【类型一】直接运用平方差公式进行计算。
幂的乘方和积的乘方北师大版数学初一教案篇二十
1.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()。
a.角平分线b.中位线c.高d.中线。
2.下列说法错误的是()。
a.三角形的角平分线能把三角形分成面积相等的两部分。
b.三角形的三条中线,角平分线都相交于一点。
c.直角三角形三条高交于三角形的一个顶点。
d.钝角三角形的三条高所在直线的交点在三角形的外部。
3.角形的角平分线、中线和高()。
a.都是射线b.都是直线。
c.都是线段d.都在三角形内。
【本文地址:http://www.pourbars.com/zuowen/19420388.html】