作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么制定才合适呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
初二数学教学案例 初二数学教案篇一
1.使学生会用完全平方公式分解因式.
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点.
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
练一练.下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
六、作业:1、
2、分解因式:
x2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
初二数学教学案例 初二数学教案篇二
一、教材分析
1、 特点与地位: 重点中的重点。本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通 讯网络等方面具有一定的实用意义。
2、 重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题 的自身特点,确立本课的重点和难点如下:
(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。 (2)难点:求解最短路径算法的程序实现。 3、 教学安排: 最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每 一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时 讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决 与算法分析相结合,逐步推动教学过程。
二、教学目标分析 1、知识目标:掌握最短路径概念、能够求解最短路径。 2、能力目标: (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。 (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。 3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析 课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授 法”以外,主要采用“案例教学法” ,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的 内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度 是本节课成功的关键。
四、学法指导 1、 课前 上次课结课时给学生布置任务,使其有针对性的预习。 2、 课中 指导学生讨论任务解决方法,引导学生分析本节课知识点。 3、 课后 给学生布置同类型任务,加强练习。
五、教学过程分析 (一)课前复习(3~5 分钟) 回顾“路径”的概念,为引出“最短路径”做铺垫。 教学方法及注意事项: (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。 (2)提示学生“温故而知新” ,养成良好的学习习惯。
(二)导入新课(3~5 分钟) 以城市公路网为例, 基于求两个点间最短距离的实际需要, 引出本课教学内容 “求最短路径问题” 。 教学方法及注意事项: (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的 自然过渡。 (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例 子只需要概述,能够说明问题即可。
(三)讲授新课(25~30 分钟) 1、 求某一结点到其他各结点的最短路径(重点) 主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。 (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。 (3~5 分钟) 教学方法及注意事项: ① 主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号 表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用 写在箭头的旁边。 )一边用语言描述,一边在黑上画图。 ② 注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。 ③ 及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为 边的权值) ,将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。 ④ 利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。
教学方法及注意事项: ① 启发式教学,如何实现按路径长度递增产生最短路 径? ② 结合案例分析求解最短路径过程中 (重点)注意此处借助 黑板,按照算法思想的步骤。同样,也是只示范一部分,余下 部分由学生独立思考完成。
(四)课堂小结(3~5 分钟) 1、明确本节课重点
2、提示学生, 这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。 六、教学特色 以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯 燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。
初二数学教学案例 初二数学教案篇三
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。八(1)班、(3)班,两班比较,一班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。三班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
第十三章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十四章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十五章整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。
初二数学教学案例 初二数学教案篇四
一、学习目标:1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重点: 多项式除以单项式的运算法则及其应用
难点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
a、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
b、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
c、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
d、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
e、多项式除以单项式法则
第三十四学时:14.2.1 平方差公式
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重点: 平方差公式的推导和应用
难点: 理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
导入新课: 计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
初二数学教学案例 初二数学教案篇五
一、学习目标:1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重点: 多项式除以单项式的运算法则及其应用
难点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
a、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
b、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
c、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
d、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
e、多项式除以单项式法则
【本文地址:http://www.pourbars.com/zuowen/2060704.html】