作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
苏教版最小公倍数教案篇一
1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。
2、了解最小公倍数,学会用短除法求两个数的最小公倍数。
3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。
学会用短除法求两个数的最小公倍数。
师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。
2、对出一个数,它既是2的倍数也是3的倍数。
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?
请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。
师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。
出示教材上的情境图。
师:从两个人的对话中了解到哪些数学信息?
生1:聪聪用了5/6小时。
生2:红红用3/4小时就打完了。
师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。
学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?
师:谁来说说是怎样比较的?谁打得快呢?
学生交流,教师进行板书。
生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
红红打得快。
生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。
师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?
学生可能有不同的表达方式,概括一下,应有如下回答:
●相同的地方
(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。
(2)两种方法通分时用的分母12和24都是6和4的公倍数。
教学预设
●不同的地方
(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。
(2)24是12的2倍。
……
师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。
学生自己找,教师巡视。
师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数
4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,
师:如果让你继续找下去,4的倍数还有没有?用什么表示?
生:还有无数个,用省略号表示。
生:6的倍数有:6,12,18,24,30,36,42,48,
师:如果让你继续找下去,6的倍数还有没有?用什么表示?
生:还有无数个,也用省略号表示。
生:然后找4和6的公倍数有:12,24,36,48,……。
教师根据学生的回答出示课件。
师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?
学生可能会说:
生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。
师:60后面还有没有?还有多少个?
生:还有无数个,用省略号表示。
师:有没有最大公倍数?
生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。
师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?
生:12。
师:还有比12小的公倍数吗?
生:没有了。
师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)
师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。
学生之间互相交流。
教师引导学生出概念(出示课件)让学生读一读。
师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)
用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。
板书设计:
苏教版最小公倍数教案篇二
第十册数学p72—74最小公倍数
1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。
2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。
3、培养学生的积极学习情感,学会欣赏他人。
1、用短除法求30与45的最大公约数
独立完成,一人板演,集体订正。
师提问:怎样用短除法求两个数的最大公约数?
(评析:根据教材的内容与学生的.实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)
1、揭示课题
今天我们来研究最小公倍数。(板书课题)
2、明确意义
师:你认为什么是最小公倍数?
生1:两个数公有的最小的倍数。
师:说的很好,你很会扩写。(生笑)
生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。
生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。
生说完师出示,齐读。
(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)
3、探讨求法
出示:求4与5的最小公倍数。
师:你认为可以怎样求两个数的最小公倍数?
生1:用短除法。(师板书:短除法)
师:oh,你会吗?
苏教版最小公倍数教案篇三
课本 p88~90 例 1、例 2。
1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
求两个数最小公倍数的方法。
怎样求3和2的最小公倍数?
第一步:3的倍数有:()
2的倍数有:()
第二步:3和2的公倍数有:( )
第三步:3和2的最小公倍数是:()
1、 要求小组内互相解决出现的错误,并能说说自己的方法;
2、要求学生说说:
(1)什么是公倍数和最小公倍数?
(2)两个数的公倍数的个数是怎样的?
1、出示书p88例1题
一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?
(1)、学生进行讨论:
(2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画
(3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。
(4)、还可以怎样表示求3和2的最小公倍数?
①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。
可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。
3的倍数 2的倍数
6, 6 是最小的公倍数,叫做它们的最小公倍数。
2、考考你:用新学的知识解决问题:完成p89做一做
3、教学例2:怎样求 6 和 8 的最小公倍数?
(1)学生独立完成,全班交流。
(2)学生交流方法有(交流时课件演示)
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?
8 的倍数:8,16,24,32,40,48,?
6 和 8 公倍数:24,48,?
6 和 8 的最小公倍数:24
②用图表示也很清楚。
③6 的倍数中有哪些是 8 的倍数呢?
你还有其他方法吗?和同学讨论一下。
教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:
数的乘积。
4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?
5、考考你会求两个数的最小公倍数吗?
完成书p90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9
6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
7、我能很快说出每组数的最小公倍数。
8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )
书p91第1题。
通过这节课的学习,你有什么收获?
板书设计 最小公倍数
公倍数:两个数公有的倍数
最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:
个数的公倍数中找出两个数的最小公倍数
2、特殊情况:
①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。
【本文地址:http://www.pourbars.com/zuowen/2113552.html】