103823立方根(优质十二篇)

格式:DOC 上传日期:2023-04-03 19:27:08
103823立方根(优质十二篇)
时间:2023-04-03 19:27:08     小编:zdfb

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

103823立方根篇一

1、了解立方根的概念,初步学会用根号表示一个数的立方根.

2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.

3、让学生体会一个数的立方根的惟一性.

4、分清一个数的立方根与平方根的区别。过程与方法通过类比平方根的方法学习立方根的有关知识,领会类比思想。情感、态度和价值观通过对开立方和立方互为逆运算关系的学习,体现事物之间对立又统一的辩证关系,激发学生探索数学的兴趣。教学重点、难点重点:1、 立方根的概念。2、 会用计算器求一个数的立方根。难点:1、 正确理解立方根的概念。2、 会求一个数的立方根。3、 区分立方根与平方根的不同之处。教学设计:一、             复习知识,引入新课教师提问:平方根我们是如何定义的?平方根有哪些性质?通过复习,增强学生的记忆,同时为立方根概念和性质的学习作铺垫。二、             探究立方根的概念和性质1、多媒体展示立方体并提问,让学生思考。

问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?

设这种包装箱的边长为x m,则 =27这就是求一个数,使它的立方等于27.

因为 =27,  所以x=3.  即这种包装箱的边长应为3 m形式个      人      备       课集体研讨与个案补充   导学活动过2、教师提问:立方根的概念是什么?学生讨论交流后回答,教师归纳。

如果一个数的立方等于 ,这个数叫做 的立方根(也叫做三次方根),即如果 ,那么 叫做 的立方根3、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?     因为 ,所以8的立方根是(  2   )     因为 ,所以0.125的立方根是(   )因为 ,所以8的立方根是(  0   )因为 ,所以8的立方根是(     )因为 ,所以8的立方根是(     )【总结归纳】:一个正数有一个正的立方根0有一个立方根,是它本身一个负数有一个负的立方根任何数都有唯一的立方根一个数 的立方根,记作 ,读作:“三次根号 ”,其中 叫被开方数,3叫根指数,不能省略,若省略表示平方。例如: 表示27的立方根, ; 表示 的立方根, .4、探究: 因为 所以    =   因为 ,所以   =   

利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即  形式

个      人      备       课集体研讨与个案补充

5、 例  求下列各式的值:

(1) ;  (2) ;  (3)  

(4) ; (5) ; (6)

三、用计算器求立方根

1、问题: 有多大呢?

因为 ,

所以

2、利用计算器来求一个数的立方根:操作 用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同。步骤:输入  → 被开方数 → = → 根据显示写出立方根.四、课堂练习课本79页1、2、3、4五、小结巩固   1、立方根的概念及性质

2、用计算器来求一个数的立方根。

六、作业:p80习题13.2第4、8题反思

103823立方根篇二

的转化思想;

5.通过符号的引入体验的简洁美.

和难点

:的概念与性质.

:会求某些数的.

启发式,讲练结合

幻灯片.

)

用式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵ (-3)3=-27,

(5)∵  (102)3=106,

(6)∵  (103)3=109,

例3. 解方程:

(1)x3=0.125;(2)3(x-4)3-1536=0.

解:(1)x3=0.125

x=0.5.

(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)

3(x-4)3=1536

(x-4)3=512

x-4=8

x=12.

尽管我们了,而我们也只能由的定义求解x3=a(a为常数)这一类型的

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由定义去解.

填空练习:

(1)1的平方根是____;为____;算术平方根为____.

(2)平方根是它本身的数是____.

(3)是其本身的数是____.

(4)算术平方根是其本身的数是________.

(5) 的为________.

(6) 的平方根为________.

(7) 的为________

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)

(3)±1和0.(由此题,再复习一道的性质.)

(4)0,1.(此题有学生可能会忘掉0.)

(5)-2(此题学生易得出-4的答案,应引导学生将 翻译为-8,在求,也有学生将 看成 得到 ,讲解时注意)

(6) (此题首先让学生把 计算出来,再求平方根,而且平方根有两个)

(7)-2.

(8) , (此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)

今天我们主要了的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与是今后我们中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

教材p.141练习1、2、4.

当是一位整数时,很容易求出这个;但当是两位或两位以上的整数时,也能容易地求出吗?例如求140608的,怎样求容易?

下面就介绍它的巧妙求法.

先用前三位数140来确定的十位数.因为53<140<63,所以十位数是5,而不是6.再用最后一位数8来确定的个位数.因为23=8,所以个位数是2.就是说,140608的是52.确定的个位数时要注意下面规律:我们知道:13=1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,的个位数就等于它本身(1、4、5、6、9);

因为23=8,83=512,就是说当被开方数的末位数是8和2时,的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,的个位数就分别是7和3).

一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的.请用这种方法求下列各数的:

21952,50653,79507,287496,970299.

103823立方根篇三

目标

,渗透数学的转化思想;

5.通过符号的引入体验数学的简洁美.

重点和难点

重点:的概念与性质.

难点:会求某些数的.

方法

手段

过程

)

用数学式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵ (-3)3=-27,

(5)∵  (102)3=106,

(6)∵  (103)3=109,

例3. 解方程:

(1)x3=0.125;(2)3(x-4)3-1536=0.

解:(1)x3=0.125

x=0.5.

(2)3(x-4)3-1536=0(此题可由学生先做,纠正错误)

3(x-4)3=1536

(x-4)3=512

x-4=8

x=12.

尽管我们学习了,而我们也只能由的定义求解x3=a(a为常数)这一类型的

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由定义去解.

填空练习:

(1)1的平方根是____;为____;算术平方根为____.

(2)平方根是它本身的数是____.

(3)是其本身的数是____.

(4)算术平方根是其本身的数是________.

(5) 的为________.

(6) 的平方根为________.

(7) 的为________

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)

(3)±1和0.(由此题,再复习一道的性质.)

(4)0,1.(此题有学生可能会忘掉0.)

(5)-2(此题学生易得出-4的答案,应引导学生将 翻译为-8,在求,也有学生将 看成 得到 ,讲解时注意)

(6) (此题首先让学生把 计算出来,再求平方根,而且平方根有两个)

(7)-2.

(8) , (此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)

今天我们主要学习了的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与是今后我们学习中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

教材p.141练习1、2、4.

设计

当是一位整数时,很容易求出这个;但当是两位或两位以上的整数时,也能容易地求出吗?例如求140608的,怎样求容易?

下面就介绍它的巧妙求法.

先用前三位数140来确定的十位数.因为53<140<63,所以十位数是5,而不是6.再用最后一位数8来确定的个位数.因为23=8,所以个位数是2.就是说,140608的是52.确定的个位数时要注意下面规律:我们知道:13=1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,的个位数就等于它本身(1、4、5、6、9);

因为23=8,83=512,就是说当被开方数的末位数是8和2时,的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,的个位数就分别是7和3).

一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的.请用这种方法求下列各数的:

21952,50653,79507,287496,970299.

103823立方根篇四

一、课题名称

§课型

新授课时安排

1/1二、教学目标1、   经历探求立方根的过程,了解立方根、开立方的概念。会用根号表示一个数的立方根,能用立方运算求立方根。2、   理解立方根的性质,并会用于进行计算。三、教学重点、难点通过对概念的理解,求立方根四、教学方法讲练结合五、教学手段课前预习三次方运算教学媒体投影仪六、教学过程

教学内容

教师活动学生活动备注做一做:某化工厂要造一个体积是原来8倍的球形储气罐,问:它的半径是原来的几倍?若体积是原来的4倍呢? 完成下面的表格(可用计算器)

a

1  2

3

4

5

6

10

n

a3类比平方根的定义,若x3=a,你能给x起一个名吗? 如果一个数x的立方等于a,即x3=a,那么,这个数x就叫做a的立方根。因为(-2/3)3=-8/27,则-2/3是 -8/27的立方根。你能举出三种不同类型的数的立方根吗?(正数、0、负数)做一做1、      2的立方等于多少?是否有其他数的立方也等于8?由此可得8的立方根有几个?是多少?2、      -3的立方等于多少?是否有其他数的立方等于-27?有此可得-27的立方根有几个?是多少?议一议1、 正数由几个立方根?   2、 0有几个立方根?  3、 负数呢? 4、由此可得,一个数由几个立方根?通过自主探索辅以小组讨论,归纳总结出:每个数都有一个立方根。正数的立方根是正数,0的立方根是0,负数的立方根是负数。思考后小组讨论1、立方根的表示(1)         类比平方根的表示,你能表示出一个数a的立方根吗?(2)          读作“三次根号a”,例如,8的立方根是 2,表示为 =2; 7的立方根表示为 。你能举出几个数的立方根并用符号表示出来吗?3、      开立方(1)类比开平方,你能给开立方下一个定义吗?其中a叫做什么?学生: 试叙述:求一个数立方根的运算叫做开立方。其中a叫做被开方数。(2) 你能谈谈你对开立方的认识吗?学生: 各抒己见。(至少两点:①它是一种运算,而不是结果;②它与立方互为逆运算。)例1           求下列各数的立方根:(1)-27;(2) ;(3)0.216;(4)-5解:(1)         因为(-3)3=-27,所以-27的立方根是-3,即: =-3;(2)         因为  = ,所以 的立方根是 ,即: = ;(3)         因为0.63=0.216,所以0.216的立方根是0.6,即: =0.6;(4)         -5的立方根是 。想一想:表示a的立方根,那么( )3=?    3呢?七、练习设计八、板书设计总结给出( )3=a; 3=a的原因及验证方法。根据这两个公式做例2,可先让优生口述一个题的步骤和结果以及依据。例2:求下列各式的值①  ②   ③-  ④( )3                    课题做一做         议一议        想一想      课堂练习九、教学反思本节课内容较多,尤其是公式( )3=a,   3=a的理解及应用要牢固。

103823立方根篇五

目标

,渗透数学的转化思想;

5.通过符号的引入体验数学的简洁美.

重点和难点

重点:的概念与性质.

难点:会求某些数的.

方法

手段

过程

)

用数学式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.

第 1 2 页  

103823立方根篇六

的转化思想;

5.通过符号的引入体验的简洁美.

和难点

:的概念与性质.

:会求某些数的.

启发式,讲练结合

幻灯片.

)

用式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵ (-3)3=-27,

(5)∵  (102)3=106,

(6)∵  (103)3=109,

例3. 解方程:

(1)x3=0.125;(2)3(x-4)3-1536=0.

解:(1)x3=0.125

x=0.5.

(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)

3(x-4)3=1536

(x-4)3=512

x-4=8

x=12.

尽管我们了,而我们也只能由的定义求解x3=a(a为常数)这一类型的

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由定义去解.

填空练习:

(1)1的平方根是____;为____;算术平方根为____.

(2)平方根是它本身的数是____.

(3)是其本身的数是____.

(4)算术平方根是其本身的数是________.

(5) 的为________.

(6) 的平方根为________.

(7) 的为________

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)

(3)±1和0.(由此题,再复习一道的性质.)

(4)0,1.(此题有学生可能会忘掉0.)

(5)-2(此题学生易得出-4的答案,应引导学生将 翻译为-8,在求,也有学生将 看成 得到 ,讲解时注意)

(6) (此题首先让学生把 计算出来,再求平方根,而且平方根有两个)

(7)-2.

(8) , (此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)

今天我们主要了的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与是今后我们中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

教材p.141练习1、2、4.

当是一位整数时,很容易求出这个;但当是两位或两位以上的整数时,也能容易地求出吗?例如求140608的,怎样求容易?

下面就介绍它的巧妙求法.

先用前三位数140来确定的十位数.因为53<140<63,所以十位数是5,而不是6.再用最后一位数8来确定的个位数.因为23=8,所以个位数是2.就是说,140608的是52.确定的个位数时要注意下面规律:我们知道:13=1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,的个位数就等于它本身(1、4、5、6、9);

因为23=8,83=512,就是说当被开方数的末位数是8和2时,的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,的个位数就分别是7和3).

一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的.请用这种方法求下列各数的:

21952,50653,79507,287496,970299.

103823立方根篇七

的转化思想;

5.通过符号的引入体验的简洁美.

和难点

:的概念与性质.

:会求某些数的.

启发式,讲练结合

幻灯片.

)

用式表示为:

若x3=a,则x叫做a的,或称x叫做a的三次方根.

2.的表示方法:

类似于平方根德表示方法,数a的我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的,而 则表示125的算术平方根.

练习:用根号表示下列各数的:

3.开立方概念:

求一个数的的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的.

例1. 求下列各数的:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的;像-8、 、 这样的负数有一个负的;0的是0.由此我们得了的性质.

5.的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵ (-3)3=-27,

(5)∵  (102)3=106,

(6)∵  (103)3=109,

例3. 解方程:

(1)x3=0.125;(2)3(x-4)3-1536=0.

解:(1)x3=0.125

x=0.5.

(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)

3(x-4)3=1536

(x-4)3=512

x-4=8

x=12.

尽管我们了,而我们也只能由的定义求解x3=a(a为常数)这一类型的

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由定义去解.

填空练习:

(1)1的平方根是____;为____;算术平方根为____.

(2)平方根是它本身的数是____.

(3)是其本身的数是____.

(4)算术平方根是其本身的数是________.

(5) 的为________.

(6) 的平方根为________.

(7) 的为________

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)

(3)±1和0.(由此题,再复习一道的性质.)

(4)0,1.(此题有学生可能会忘掉0.)

(5)-2(此题学生易得出-4的答案,应引导学生将 翻译为-8,在求,也有学生将 看成 得到 ,讲解时注意)

(6) (此题首先让学生把 计算出来,再求平方根,而且平方根有两个)

(7)-2.

(8) , (此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)

今天我们主要了的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与是今后我们中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

教材p.141练习1、2、4.

当是一位整数时,很容易求出这个;但当是两位或两位以上的整数时,也能容易地求出吗?例如求140608的,怎样求容易?

下面就介绍它的巧妙求法.

先用前三位数140来确定的十位数.因为53<140<63,所以十位数是5,而不是6.再用最后一位数8来确定的个位数.因为23=8,所以个位数是2.就是说,140608的是52.确定的个位数时要注意下面规律:我们知道:13=1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,的个位数就等于它本身(1、4、5、6、9);

因为23=8,83=512,就是说当被开方数的末位数是8和2时,的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,的个位数就分别是7和3).

一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的.请用这种方法求下列各数的:

21952,50653,79507,287496,970299.

103823立方根篇八

的转化思想;

5.通过立方根符号的引入体验的简洁美.

和难点

:立方根的概念与性质.

:会求某些数的立方根.

启发式,讲练结合

幻灯片.

.(也称数a的)

用式表示为:

若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.

2.立方根的表示方法:

类似于平方根德表示方法,数a的立方根我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的立方根,而 则表示125的算术平方根.

练习:用根号表示下列各数的立方根:

3.开立方概念:

求一个数的立方根的运算,叫做开立方.

4.开立方运算与立方运算互为逆运算.

因此,我们可以根据立方运算来求一些数的立方根.

例1. 求下列各数的立方根:

解:(1)∵(-2)3=-8,

(2)∵23=8,

(4)∵  (0.6)3=0.216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的立方根;像-8、 、 这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.

5.立方根的性质:

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.

例2.求下列各式的值:

解:(1)∵33=27,

(2)∵ (-3)3=-27,

(5)∵  (102)3=106,

(6)∵  (103)3=109,

例3. 解方程:

(1)x3=0.125;(2)3(x-4)3-1536=0.

解:(1)x3=0.125

x=0.5.

(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)

3(x-4)3=1536

(x-4)3=512

x-4=8

x=12.

尽管我们了立方根,而我们也只能由立方根的定义求解x3=a(a为常数)这一类型的

简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由立方根定义去解.

填空练习:

(1)1的平方根是____;立方根为____;算术平方根为____.

(2)平方根是它本身的数是____.

(3)立方根是其本身的数是____.

(4)算术平方根是其本身的数是________.

(5) 的立方根为________.

(6) 的平方根为________.

(7) 的立方根为________

(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.

解:(1)±1;1;1.

(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)

(3)±1和0.(由此题,再复习一道立方根的性质.)

(4)0,1.(此题有学生可能会忘掉0.)

(5)-2(此题学生易得出-4的答案,应引导学生将 翻译为-8,在求立方根,也有学生将 看成 得到 ,讲解时注意)

(6) (此题首先让学生把 计算出来,再求平方根,而且平方根有两个)

(7)-2.

(8) , (此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)

今天我们主要了立方根的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与立方根是今后我们中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.

教材p.141练习1、2、4.

当立方根是一位整数时,很容易求出这个立方根;但当立方根是两位或两位以上的整数时,也能容易地求出吗?例如求140608的立方根,怎样求容易?

下面就介绍它的巧妙求法.

先用前三位数140来确定立方根的十位数.因为53<140<63,所以十位数是5,而不是6.再用最后一位数8来确定立方根的个位数.因为23=8,所以个位数是2.就是说,140608的立方根是52.确定立方根的个位数时要注意下面规律:我们知道:13=1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,立方根的个位数就等于它本身(1、4、5、6、9);

因为23=8,83=512,就是说当被开方数的末位数是8和2时,立方根的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,立方根的个位数就分别是7和3).

一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的立方根.请用这种方法求下列各数的立方根:

21952,50653,79507,287496,970299.

103823立方根篇九

课题立方根教者

教学目标

基础性

目  标1、在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中要注意感悟“类比”在知识产生和发展过程中的作用。 2、了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根.

发展性

目  标能用立方根解决一些简单的实际问题。设计思路本节课通过实际问题(由正方体的体积计算边长)引出需要研究立方运算的逆运算,使学生在研究、交流的过程中说明学习立方根的意义,也便于学生了解开立方与立方是互逆运算,教学中可以引导学生借助平方根的定义,平方根的符号表示,开平方运算,类比给立方根下定义,给出立方根的符号表示和开立方运算,由特殊数的立方根到一般数的立方根,这是由特殊到一般的认识过程,再由一般数的立方根解决一些问题,是一般到特殊的认识过程,在教学时要让学生积极参与所有的数学活动,使学生在学习过程中体验科学探究与发现的方法与过程,感受到学习的兴趣与乐趣,认识到自我价值,切不可让学生死记硬背立方根的概念及符号表示,否则会扼杀学生的创造力和积极性。

学情分析

学生有什么

平方根的相关知识

学生缺什么

“类比”在知识的运用

难点表述正确地理解立方根的概念及符号表示并能熟练应用

教学活动

具体内容设计意图

预习设计1.如果x =a,则                 平方根,也叫           

2.25的平方根,记作:                     。 7的平方根,记作:                     。 0的平方根,记作:                     。 —8     平方根。 正数有    平方根,它们是              。 0的平方根是        。 负数     平方根。

情境创设教师、学生

主要活动你能根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?例1 求下列各数的立方根 (1)-64     (2)-   (3)9                 (4)0           根据计算结果,与平方根作比较,有什么不同?与同学交流。 巩固练习: 1、下列说法正确的是() a任意数a的平方根有2个,它们互为相反数  b任意数a的立方根有1个 c-3是27的负的立方根                     d(-1) 的立方根是-1 2、下列判断正确的是() a64的立方根是 4          b(-1) 的立方根是1 c 的立方根是2      d如果 =a,则a=0 3、求下列各式中的x (1)x =27                (2) x +729=0(3)(x-3) =64 例2.已知一个正方形的棱长是7cm,要再做一个正方形,使它的体积是原正方形体积的8倍,求所做的正方形的棱长是多少m。 思维拓展,运用新知 1、讨论( ) 等于多少?( ) 等于多少? 等于多少? 等于多少?

课后作业

103823立方根篇十

课题 13.2 立方根(1)

昌江县昌城中学 钟彬一、教学目的1、使学生了解数的立方根的概念。2、使学生能用根号表示一个数的立方根。3、使学生能用立方运算求某数的立方根。4、使学生能了解开立方的概念。5、使学生理解开立方与立方互为逆运算。6、通过性质推导过程培养学生的类比思想和推理能力。二、教学分析重点:立方根的概念与性质及求法。难点:求一个数的立方根的方法。三、教学方法  启发式,讲练结合    四、教学手段     多媒休课件五、教学过程教师活动学生活动设计意图一、复习1、请同学们回忆一下,平方根是如何定义的? 2、平方根有哪些性质?二、新授1、你能否由平方根的定义说出立方根的定义呢?(多媒体展示问题) 立方根的概念:如果一个数的立方等于a,这个数就叫做a的立方根。(也称数a的三次方根。)用数学式子表示为:若x3=a, 则x叫做a的立方根或三次方根。2、立方根的表示方法:类似平方根的表示方法。数a的立方根我们用符号 来表示,读作“三次根号a”,其中a叫做被开方数,3叫做根指数,且不能省略,否则与平方根混淆。例1 求下列各数的立方根:(1)-8;(2)8;(3)-8/27;(4)0、216;(5)0(6)-27/64;(7)103;(8)4 。解:(多媒体展示)3、立方根的性质:(1)正数有一个正的立方根,(2)负数有一个负的立方根,(3)0的立方根是0。例2 求下列各式的值:(1) (2) (3) (4) (5) (6) 解:(多媒体展示)三、练习  p137 练习:3四、小结1、我们在学习立方根概念时,应对照平方根概念进行。2、立方根具有哪些性质3、如何开立方,开立方与立方是互逆关系五、作业  1、p137 1、2、4。2、综合练习:同步练习1复述 复述

思考多媒体展示的问题, 倾听、理解 倾听、理解 理解 理解、记忆 理解 动手练习 回想 课外作业复习平立根的定义 复习平立根的性质 让学生思考问题,得出式子 x3=27 对比平立根,引出立方根的定义 对比平立根,理解其表示方法

让学生领会立方根的求法,并归纳出立方根的性质

加深理解立方根的求法并引出开立方与立方互为逆运算

巩固知识

回顾本节课的内容,让学生了解本节课学习的知识

让学生课外复习本节课学习的知识

计板书设

13.2  立方根(1)

一、         立方根的的概念

二、         立方根的表示方法

三、         什么是开立方

四、立方根的性质

103823立方根篇十一

的转化思想;

4.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发、探索知识的兴趣。

与难点

:用计算器求一个数的立方根的程序

:准确的用计算器求一个数的立方根

启发式

计算器,实物投影仪

了用计算器求一个数的平方根,现在我们回忆一下计算器的使用方法.如何利用计算器求一个数的平方根?操作步骤?

练习:求下列各数的平方根:

(1)13; (2)23.45

在初一了用计算器求一个数的平方或立方的方法?(由学生回答操作过程,并对比两者的差别与联系)

对于用计算器求一个数的平方根的方法我们已经熟悉了,那么如何用计算器器其一个数的立方根?与求平方根有何区别和练习?

对于求立方根和平方根的操作过程基本相同,主要差别是在开方的次数上,因此要注意其立方根时开方数是3。

例1.用计算器求

分析:求解时要用到 上方的键 ,因此要用到“2f”功能键转换。

解:用计算器求 的步骤如下:

=5

小结:从这道题刻一个观察出用计算器求立方根和平方根十分类似,区别是在倒数第二步的按键将 改为改为 ,只是次数不同。

例2.用计算器求

解:用计算器求 的步骤如下:

≈12.26

小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

练习:求下列各式的值

(1) ; (2) ; (3) ; (4)

(5) (6) (7)

(8) (9) (10)

例3.求下列各式中x的值(精确到0.01)

(1)

解:

用计算器求 的值:

(2)

解:

用计算器求 的值:

今天了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。

a组1、2、3

103823立方根篇十二

目标

重点与难点

重点:用计算器求一个数的立方根的程序

难点:准确的用计算器求一个数的立方根

方法

手段

过程

今天学习了用计算器求一个数的立方根,求立方根的方法与平方根的方法类似,但要注意开方次数。做题要细心仔细,严格按照步骤操作。

a组1、2、3

【本文地址:http://www.pourbars.com/zuowen/2210025.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map