最新初中几何数学小论文 初中数学小论文(3篇)

格式:DOC 上传日期:2023-04-06 13:05:29
最新初中几何数学小论文 初中数学小论文(3篇)
时间:2023-04-06 13:05:29     小编:zdfb

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

初中几何数学小论文 初中数学小论文篇一

关键词:建立表象、组合定理、联想定理

教师在教途上并不是一帆风顺的,尤其在农村中学,有时由于教学上的需要,往往到了初三,也会出现面对陌生学生的情况。笔者今年就遇到了尴尬:几何证明题学生会证的,却不会书写或书写不完整;知道步骤的原因和结论,但讲不出定理的内容;更多的学生面对几何题在证明时凭感觉。面对着时间紧、任务重,怎么办呢?经过一番苦思冥想,针对学生基础差、底子薄,决定狠抓“定理教学”。通过一段时间的复习,学生普遍反映在证题和书写时有了“依靠”,也发现了定理的价值,基本树立了“用定理”的意识。

那么,学生在证题时到底是由哪些原因造成思维受阻,产生解题的困惑呢?我们把它归纳为以下几点:

⑴不理解定理是进行推理的依据。其实如果我们把一道完整的几何证明题的过程进行分解,发现它的骨干是由一个一个定理组成的。而学生书写的不完整、不严密,就因为缺乏对定理必要的理解,不会用符号语言表达,从而不能严谨推理,造成几何定理无法具体运用到习题中去。

⑵找不到运用定理所需的条件,或者在几何图形中找不出定理所对应的基本图形。具体表现在不熟悉图形和定理之间的联系,思考时把定理和图形分割开来。对于定理或图形的变式不理解,图形稍作改变(或不是标准形),学生就难以思考。

⑶推理过程因果关系模糊不清。

针对以上的原因,我们在教学中采取了一些自救对策。

⒈ 定理的基本要求

我们认为,能正确书写证明过程的前提是学会对几何定理的书写,因为几何定理的符号语言是证明过程中的基本单位。因而在教学中我们采取了“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求,并重新整理了初中阶段的定理(见附页,此只列出与本文有关的定理),集中展示给学生。

例如定理43:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

一划:就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分。

如:“直角三角形”和“高线”、“相似”。

二画:就是依据定理的内容,能画出所对应的基本图形。

如:

三写:就是在分清题设和结论的基础上,能用符号语言表达 ,允许采用等同条件。

如:∵△abc是rt△,cd⊥ab于d(条件也可写成:∠acb=90°,∠cdb=90°等) ∴△acd∽△bcd∽△abc 。

学生在书写时果然出现了一些问题:②还表现在思维偏差。我们的要求是会用定理,而有些学生把定理重新证明一遍(如定理5、6);或者在一个定理中出现 ∵××,又∵××,∴××的错误。⒉ 重新建立表象

从具体到抽象,由感性到理性已成为广大数学教师传授知识的重要原则。“表象”就是人们对过去感知过的客观世界中的对象或对象在头脑中留下来的可以再现出来的形象,具有一定的鲜明性、具体性、概括性和抽象性。由于几何的每一个定理都对应着一个图形, 这给我们在教学中提供了一定的便利。我们要求学生对定理的表象不能只停留在实体的形象上,而是让学生有意识的记图形,想图形,以形成和唤起表象。我们认为,这对于理解、巩固和记忆几何定理起着重大的作用。

教给学生想形象的基本方法后,我们接下去的步骤是用实例引导学生,下面是一段经整理后的课堂教学主要内容:

⑴ 问:听了老师的介绍后,你怎样回忆垂径定理的形象?

答:垂径定理我在想的时候,脑子里留下“两条等弧、两条相等的线段、一个直角”在一闪一闪的,以后看到弧相等或其他两个条件之一,脑子里就会浮现出垂径定理。

目的:建立单个定理的表象,要求能想到非标准图形。

继续问:看到弧相等,你们只想到了垂径定理,其他的定理就没有想起来吗?

答:想到了圆心角相等、圆周角相等、弦相等……

甚至有学生想到了两条平行弦……

目的:通过表象,进行联想,使学生理解定理间的联系。

⑵ 问:从定理21开始,你能找出和它有联系的定理吗?

答:有定理22(擦短使平行直线变成线段),定理25(特殊化成菱形),定理27……

目的:一般化或特殊化或图形的平移、旋转等变化,加深定理间的联系。

⑶下面的步骤,我们让学生自主思考。学生在不断尝试的过程中,通过比较、分析、判断,进一步熟悉定理的三种语言、定理之间的联系和区别。从学生思考的角度看,他们主要是在寻找基本图形,由于定理之间有一定的联系,在一个基本图形中往往存在着另一个残缺的基本图形,所以学生大多通过连线、延长、作圆、平移、旋转等手段,也有通过特殊化、找同结论等途径把不同的定理联系起来。

下面摘录的是学生自主思考后,得到的富有创意性的结论。②定理51(一线过圆心,且两线垂直)→ 定理36(一线平移成切线)→ 定理47、48(绕切点旋转)→ 定理50。

③如下图,把 ef 向下平移(或绕a点旋转),使定理37和50联系起来(有同结论 ∠α=∠d):

⒊ 推理模式

从学生各方面的反馈情况看,多数学生觉得几何抽象还在于几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤。怎样将形式多样的推理过程让学生看得清而又摸得着呢?为此,我们在二步推理的基础上,经过归纳整理,总结了三种基本推理模式。

具体教学分三个步骤实施:

⑴精心设计三个简单的例题,让学生归纳出三种基本推理模式。

① 条件 → 结论 → 新结论 (结论推新结论式)

② 新结论 (多个结论推新结论式)

③ 新结论 (结论和条件推新结论式)

⑵通过已详细书写证明过程 的题目让学生识别不同的推理模式。

⑶通过具体习题,学生有意识、有预见性地练习书写。

这一环节我们的目的是让学生先理解证明题的大致框架,在具体书写时有一定的模式,有效地克服了学生书写的盲目性。但教学表明学生仍然出现不必要的跳步,这是什么原因呢?我们把它归结为对推理的因果关系不明确、定理是推理的依据和单位不明白。因而我们根据需要,又设计了以下一个环节。

⒋ 组合定理

基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。

下面通过一例来说明这一步骤的实施。 证明:连结ob,连结oa交bd于f。

学生从每一个推测符号中找出所对应的定理和隐含的主要定理:

比例基本性质 → s/as/ 证相似 →相似三角形性质 →垂径定理 →勾股定理 →三角形面积公式

由于学生自己主动找定理,因而印象深刻。在证明过程中确实是由一个一个定理连结起来的,也让学生体会到把定理(不排除概念、公式等)镶嵌在基本模式中,就能形成严密的推理过程。此时,可顺势布置以下的任务:给出勾股定理,你能再结合一个或多个定理,构造图形,并编出证明题或计算题吗?

实践表明:经过“模式+定理”书写方法的熏陶后,学生基本具备了完整书写的意识。

⒌ 联想定理

分析图形是证明的基础,几何问题给出的图形有时是某些基本图形的残缺形式,通过作辅助线构造出定理的基本图形,为运用定理解决问题创造条件。图形固然可以引发联想(这也是教师分析几何证明题、学生证题的基本方法之一),但对于识图或想象力较差的学生来说,就比较困难,他们往往存有疑问:到底怎样才能分解出基本图形呢?在复杂的图形中怎样找到所需要的基本图形呢?因而我们从另一侧面,即证明题的“已知、求证”上给学生以支招,即由命题的题设、结论联想某些定理,以配合图形想象。

讨论此题时,启发学生由题设中的“ab是⊙o的直径”联想定理“直径所对的圆周角是90°”,因而连结bc;“过b作⊙o的切线交ae于f”联想定理“切线的性质”,得出∠abf=90°。从而构造出基本图形②③。

由命题的结论“bf∥de”联想起“同位角相等, 两直线平行”定理,构造出基本图形④。将上述基本图形②③④ 的性质结合在一起,学生就易于思考了。

这一环节我们的引导语有:“由已知中的哪一个条件,你能联想起什么定理?”、“条件组合后能构成哪个定理?”、“有无对应的基本图形?”、“能否构造出基本图形?”等。目的是让学生树立起“图形+定理”的思考方法,把以前的无意识思考变成有目的、有意识的思考。

复习的效果最终要体现在学生身上,只有通过学生的自身实践和领悟才是最佳复习途径,因此在复习时,我们始终坚持主体性原则。在组织复习的各个环节中,充分调动学生学习的主动性和积极性:提出问题让学生想,设计问题让学生做,方法和规律让学生体会,创造性的解答共同完善。

“没有反思,学生的理解就不可能从一个水平升华到更高的水平”(弗赖登塔尔)。我们认为传授方法或解答后让学生进行反思、领悟是很好的方法,所以我们在教学时总留出足够的时间来让学生进行反思,使学生尽快形成一种解题思路、书写方法。

集中讲授能使学生对几何定理的应用有一定的认识,但如果不加以巩固,也会造成遗忘。因而我们也坚持了渗透性原则,在平时的解题分析中时常有意识地引导、反复渗透。

参考资料:

① 高三数学第二轮复习的理论和实践 孟祥东等 《中学数学教与学》2001、3

② 全国初中数学教育第十届年会论文集 p380 、p470

初中几何数学小论文 初中数学小论文篇二

【内容摘要】延时评价能够给学生广阔的思维空间,有利于培养学生的数学思维能力。本文从三个角度论述了数学教师采用延时评价对学生思维发展的重要意义,指出教师在教学实践中要成功地将延时评价与及时评价结合起来。

【关 键 词】延时评价;及时评价;思维

课堂教学中,当学生提出某些古怪、幼稚、甚至是荒诞的“怪论”时,常引来教师迫不及待的否定,无形中扑灭了学生创造的火花,挫伤学生的积极性。因此,教师千万不要及时评价,而应通过延时评价的方法,鼓励学生敢于思考、敢于与众不同、敢于发现和挑战,然后及时转换角色、转换角度,走进学生的内心世界来解决问题。

2 2

x y

例1.1 在学习“双曲线的`几何性质”时,总有学生提出这样的问题:“当x=0时,方程 - =1

2 2

a b 这些似是而非的问题是多么富有创意!从教学实践看,怪问就是一颗创造的种子,它埋在学生的心里。这颗珍贵而娇嫩的种子,只有在教师的精心呵护和培育下才会生根发芽。

在数学学习中,我们经常会碰到可以从不同角度、不同侧面来解决的问题。解决这样的问题时,教师对课堂上学生提出的解决问题的方案要采用延时评价,不能过早地给予及时的终结性的评价,否则会扼杀其他学生创新思维的火花。

2 2 2 2

例2.1已知实数a,b,x,y 满足a +b =4,x+y =9,求ax+by的最大值。

生 : 令 a=2cos α , b=2sin α , x=3cos β , y=3sin β , 则 ax+by=6(cos α cos β +

sinα sinβ )=6cos(α -β )。故当cos(α -β )=1时,ax+by 的最大值为6

教师一听,答案完全正确,情不自禁地说:“非常正确!和老师想得一模一样。其他同学呢?”哪知道

刚才举起的那些手“唰”地不见了!顿时,教师不知所措,不知道自己到底做错了什么……

正常情况下,由于受思维定势的影响,新颖、独特的见解常常出现在思维过程的后半段,也就是我们常说的“顿悟” 和“灵感”。因此,在教学中,教师不能过早地给予评价以对其他学生的思维形成定势,而应该灵活地运用延时评价,让学生在和谐的气氛中驰骋想象,使学生的个性思维得到充分发展。

案例3.1 在利用不等式求最值时,有这样一个思维受挫的教学片段:

sinx 2

求函数 y = + 〔0<x<π 〕的最小值。

2 sinx

sinx 2

生:利用平均不等式,y≥2 . =2

2 sinx师:以上不等式能取到“=”吗?

生:因为sinx≠2,所以等号取不到,这样解错了。

师:说明用不等式不能解决此问题,可以用什么方法呢?……

以上教学片段中,虽然学生的思维暂时受挫,但这种解法是富有挑战性的,由于教师过滥的及时评价引起教学的尴尬。这种尴尬,不利于学生思维的深化和发展,挫伤了学生的学习积极性。

总之,要真正实现数学课程改革的目标,教师是关键,在课堂教学中教师要成功地运用延时评价,培养学生分析问题、解决问题的能力,促进学生思维的发展。

初中几何数学小论文 初中数学小论文篇三

几何是初中生普遍认为难学,任课教师认为难教的一门学科。如果任课教师在教学的过程中倘若稍有不注意,就会导致学生的成绩两极分化,以致使学生丧失学习几何的兴趣和信心。相反,如果教师处理得当,不仅会激发学生学习数学的浓厚兴趣,还可以培养学生分析和解决问题的能力。

近期本人在七年级的几何教学中发现,学生刚学习几何,头脑中形的概念特别差,部分学生没有真正接受老师的指导,适应不了初中几何题目对抽象思维能力的要求,但是几何证明、计算题在升学考试中又占有相当高的比重,这就需要学生真正领会与掌握。往往在不同的已知条件、图形的情况下,有截然不同的解法,也需要学生具备敏锐的观察能力和一定的逻辑推理能力。以下是我从学生在课堂、作业以及测试中表现出来的问题进行了分析归纳,发现学生学习几何存在五大困难:

(1)读图、识图、画图难。不会将一些“复合”图形进行拆分,看成一些简单图形组合。不会由有关图形联想到相关的数量关系,挖掘隐含条件。

(2)几何语言表述难。几何讲究思维严密性,往往过分专业而严密的`叙述要求使学生无法逾越语言表述的障碍,仿佛就像一道难以跨越的“鸿沟”。

(3)几何逻辑推理难。学生对数学定义、定理、公理、判定、性质、法则等理解肤浅,全凭感性认识,思维不严谨,推理不严密,不会灵活运用它来解决或证明一些数学问题,以至于无法形成较好的逻辑推理能力。

(4)几何证明过程难。面对几何证明题无从下手,不知道哪些步骤该写,哪些步骤可以省略,最终导致关键步骤缺失。

(5)联系生活实际难。几何就是为自然生活服务而存在的,在生活中几何无处不在,学生学习时不善于与周围实际生活联系起来展开丰富想象。

针对学生学习几何的以上困难,我认为,教师在几何“入门”教学时应转变教学思路,把严密的逻辑推理和合情推理有机的结合起来,通过猜想、观察、归纳等合情推理,让学生消除对几何学习的恐惧心理。

要在数学活动中来学习几何,即“做数学”。还要加强学生探究性学习,结合图形理解运用。读图、识图要遵循由简到繁的规律,先从简单的图形开始,逐步向复杂的图形过渡。要根据已知条件以及与其有关的定理作辅助线或者进行逆向思维,从结论出发,结合已知条件缺什么补什么。教师是学生学习过程中的引导者,至此在教学过程中我主要围绕以下几个方面去开展教学:

首先要求学生掌握基本图形的画法,如画直线、射线、线段、角。然后学习几个基本作图,如作一条线段等于已知线段、作一个角等于已知角、作角的平分线、作线段的垂直平分线。观察图形时,指导学生对图形进行拆分,把一个复杂的图形分成几个简单的图形来处理,从而提高识图能力。充分利用教材编排特点:量一量、摆一摆、画一画、折一折、填一填转移学生的注意力,培养学生的动手动脑能力。

首先,结合图形让学生掌握直线、射线、线段、角的多种表示方法,认真理解数学定义、定理、公理、判定、性质,用简单的符号表达出因果关系,然后用到综合问题中,让学生大胆的猜想并描述出来,教师再加以指导,以此克服学生“怕几何”的心理。

要解决几何的证明问题,就要学会逻辑推理。几何证明过程的描述,是初学几何的学生很难入门的事情。我在教学时着重于方法的指导,重点介绍了“执果索因”的分析方法,让学生从结果入手,逐层剥笋,寻找原因,找到源头,明白已知条件的用处,然后再由条件到结论,把过程写出来。学生在学习中强调“一看、二悟、三对照”,一看,看课本例题,看老师的板书;二悟,通过对例题和教师板书的观察,悟出其中的道理,形成一个清晰的思路;三对照,就是写出解题过程后与他人对照,请老师指点。

数学来源于生活,也服务于生活。我在教学过程中把几何与生活紧密联系起来,如利用在墙上钉木条的事例理解“两点确定一条直线”,利用测量跳远成绩理解“垂线段最短”,利用木工师傅做门框时钉斜条理解“三角形的稳定性”等等。让学生把感性认识与理性认识结合起来,真正做到学以致用。

总之,初中几何入门教学应不拘一格,每位教师可根据自己的实际情况和学生的实际情况,制定切实可行的教学方案,以帮助和引导学生转变旧的思维方式为主线,以培养推理论证能力为重点,以提高教育教学质量为目的,加强初中几何入门的教学工作。

【本文地址:http://www.pourbars.com/zuowen/2355273.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map