2023年c语言位运算符解释 c中的位运算符大全

格式:DOC 上传日期:2023-04-26 21:22:27
2023年c语言位运算符解释 c中的位运算符大全
时间:2023-04-26 21:22:27     小编:zdfb

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

c语言位运算符解释 c中的位运算符篇一

一个比特(bit)位只有 0 和 1 两个取值,只有参与&运算的两个位都为 1 时,结果才为 1,否则为 0。例如1&1为 1,0&0为 0,1&0也为 0,这和逻辑运算符&&非常类似。

c语言中不能直接使用二进制,&两边的操作数可以是十进制、八进制、十六进制,它们在内存中最终都是以二进制形式存储,&就是对这些内存中的'二进制位进行运算。其他的位运算符也是相同的道理。

例如,9 & 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001 (1 在内存中的存储)

也就是说,按位与运算会对参与运算的两个数的所有二进制位进行&运算,9 & 5的结果为 1。

又如,-9 & 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-9 & 5的结果是 5。

关于正数和负数在内存中的存储形式,我们已在教程《整数在内存中是如何存储的》中进行了讲解。

再强调一遍,&是根据内存中的二进制位进行运算的,而不是数据的二进制形式;其他位运算符也一样。以-9&5为例,-9 的在内存中的存储和 -9 的二进制形式截然不同:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

-0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (-9 的二进制形式,前面多余的 0 可以抹掉)

按位与运算通常用来对某些位清 0,或者保留某些位。例如要把 n 的高 16 位清 0 ,保留低 16 位,可以进行n & 0xffff运算(0xffff 在内存中的存储形式为 0000 0000 -- 0000 0000 -- 1111 1111 -- 1111 1111)。

【实例】对上面的分析进行检验。

00001. #include

00002.

00003. int main(){

00004. int n = 0x8fa6002d;

00005. printf("%d, %d, %x ", 9 & 5, -9 & 5, n & 0xffff);

00006. return 0;

00007. }

运行结果:

1, 5, 2d

参与|运算的两个二进制位有一个为 1 时,结果就为 1,两个都为 0 时结果才为 0。例如1|1为1,0|0为0,1|0为1,这和逻辑运算中的||非常类似。

例如,9 | 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

| 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1101 (13 在内存中的存储)

9 | 5的结果为 13。

又如,-9 | 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

| 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

-9 | 5的结果是 -9。

按位或运算可以用来将某些位置 1,或者保留某些位。例如要把 n 的高 16 位置 1,保留低 16 位,可以进行n | 0xffff0000运算(0xffff0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。

【实例】对上面的分析进行校验。

00001. #include

00002.

00003. int main(){

00004. int n = 0x2d;

00005. printf("%d, %d, %x ", 9 | 5, -9 | 5, n | 0xffff0000);

00006. return 0;

00007. }

运行结果:

13, -9, ffff002d

参与^运算两个二进制位不同时,结果为 1,相同时结果为 0。例如0^1为1,0^0为0,1^1为0。

例如,9 ^ 5可以转换成如下的运算:

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

^ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1100 (12 在内存中的存储)

9 ^ 5的结果为 12。

又如,-9 ^ 5可以转换成如下的运算:

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

^ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)

-----------------------------------------------------------------------------------

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0010 (-14 在内存中的存储)

-9 ^ 5的结果是 -14。

按位异或运算可以用来将某些二进制位反转。例如要把 n 的高 16 位反转,保留低 16 位,可以进行n ^ 0xffff0000运算(0xffff0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。

【实例】对上面的分析进行校验。

00001. #include

00002.

00003. int main(){

00004. unsigned n = 0x0a07002d;

00005. printf("%d, %d, %x ", 9 ^ 5, -9 ^ 5, n ^ 0xffff0000);

00006. return 0;

00007. }

运行结果:

12, -14, f5f8002d

取反运算符~为单目运算符,右结合性,作用是对参与运算的二进制位取反。例如~1为0,~0为1,这和逻辑运算中的!非常类似。。

例如,~9可以转换为如下的运算:

~ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

-----------------------------------------------------------------------------------

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0110 (-10 在内存中的存储)

所以~9的结果为 -10。

例如,~-9可以转换为如下的运算:

~ 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1000 (9 在内存中的存储)

所以~-9的结果为 8。

【实例】对上面的分析进行校验。

00001. #include

00002.

00003. int main(){

00004. printf("%d, %d ", ~9, ~-9 );

00005. return 0;

00006. }

运行结果:

-10, 8

左移运算符<<用来把操作数的各个二进制位全部左移若干位,高位丢弃,低位补0。

例如,9<<3可以转换为如下的运算:

<< 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0100 1000 (72 在内存中的存储)

所以9<<3的结果为 72。

又如,(-9)<<3可以转换为如下的运算:

<< 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

-----------------------------------------------------------------------------------

1111 1111 -- 1111 1111 -- 1111 1111 -- 1011 1000 (-72 在内存中的存储)

所以(-9)<<3的结果为 -72

如果数据较小,被丢弃的高位不包含 1,那么左移 n 位相当于乘以 2 的 n 次方。

【实例】对上面的结果进行校验。

00001. #include

00002.

00003. int main(){

00004. printf("%d, %d ", 9<<3, (-9)<<3 );

00005. return 0;

00006. }

运行结果:

72, -72

右移运算符>>用来把操作数的各个二进制位全部右移若干位,低位丢弃,高位补 0 或 1。如果数据的最高位是 0,那么就补 0;如果最高位是 1,那么就补 1。

例如,9>>3可以转换为如下的运算:

>> 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)

-----------------------------------------------------------------------------------

0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001 (1 在内存中的存储)

所以9>>3的结果为 1。

又如,(-9)>>3可以转换为如下的运算:

>> 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)

-----------------------------------------------------------------------------------

1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 1110 (-2 在内存中的存储)

所以(-9)>>3的结果为 -2

如果被丢弃的低位不包含 1,那么右移 n 位相当于除以 2 的 n 次方(但被移除的位中经常会包含 1)。

【实例】对上面的结果进行校验。

00001. #include

00002.

00003. int main(){

00004. printf("%d, %d ", 9>>3, (-9)>>3 );

00005. return 0;

00006. }

运行结果:

1, -2

c语言位运算符解释 c中的位运算符篇二

& 按位与

| 按位或

^ 按位异或

~ 取反

<< 左移

>> 右移

按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。

例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码) 00000001 (1的二进制补码)可见9&5=1。

按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为0000000011111111)。

main(){

int a=9,b=5,c;

c=a&b;

printf("a=%d/nb=%d/nc=%d/n",a,b,c);

}

按位或运算符“|”是双目运算符。其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。

例如:9|5可写算式如下: 00001001|00000101

00001101 (十进制为13)可见9|5=13

main(){

int a=9,b=5,c;

c=a|b;

printf("a=%d/nb=%d/nc=%d/n",a,b,c);

}

按位异或运算符“^”是双目运算符。其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。参与运算数仍以补码出现,例如9^5可写成算式如下: 00001001^00000101 00001100 (十进制为12)。

main(){

int a=9;

a=a^15;

printf("a=%d/n",a);

}

求反运算符~为单目运算符,具有右结合性。 其功能是对参与运算的数的各二进位按位求反。例如~9的运算为: ~(0000000000001001)结果为:1111111111110110。

左移运算符“<<”是双目运算符。其功能把“<< ”左边的运算数的各二进位全部左移若干位,由“<<”右边的数指定移动的位数,高位丢弃,低位补0。例如: a<<4 指把a的各二进位向左移动4位。如a=00000011(十进制3),左移4位后为00110000(十进制48)。

右移运算符“>>”是双目运算符。其功能是把“>> ”左边的运算数的各二进位全部右移若干位,“>>”右边的数指定移动的位数。

例如:设 a=15,a>>2 表示把000001111右移为00000011(十进制3)。 应该说明的是,对于有符号数,在右移时,符号位将随同移动。当为正数时, 最高位补0,而为负数时,符号位为1,最高位是补0或是补1 取决于编译系统的规定。turbo c和很多系统规定为补1。

main(){

unsigned a,b;

printf("input a number: ");

scanf("%d",&a);

b=a>>5;

b=b&15;

printf("a=%d/tb=%d/n",a,b);

}

请再看一例!

main(){

char a='a',b='b';

int p,c,d;

p=a;

p=(p<<8)|b;

d=p&0xff;

c=(p&0xff00)>>8;

printf("a=%d/nb=%d/nc=%d/nd=%d/n",a,b,c,d);

}

【本文地址:http://www.pourbars.com/zuowen/2722934.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map