为了确保我们的努力取得实效,就不得不需要事先制定方案,方案是书面计划,具有内容条理清楚、步骤清晰的特点。写方案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编精心整理的方案策划范文,仅供参考,欢迎大家阅读。
圆的面积教学设计方案篇一
教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
基于以上的教材和学情分析,我制定了以下的教学目标:
1、认知目标:
提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:
培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。
3、情感目标:
通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。
教学重点:
教学难点:
(一)创设问题情境,激发学生学习兴趣
1、感知圆的面积:(课件出示一大一小的圆)
师:圆的大小是由什么决定的?(板书:由半径决定)
2、感知圆的面积有大有小:
(选择两个面积不同的圆)
师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。
师:那谁能说说什么叫做圆的面积?
(揭示:圆所占平面的大小叫做圆的面积。)
[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。
(二)学生合作探索,交流操作经验
1、初步感悟:
(1)课件出示:书103例7图。
师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?
原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。
通过数圆的面积,得到整圆的面积,然后把表格填完整。
学生填表、计算,汇报
小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的.计算公式。
2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。
师:那么,这节课我们就来共同找出求圆面积的方法。
3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)
[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。
师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)
[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。
你想采用什么方法把圆转化成学过的图形?
[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。
师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。
师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)
[设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。
(三)利用课件演示,呈现经验总结
[注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。
圆的面积教学设计方案篇二
1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
理解和掌握圆面积的计算公式的推导过程
( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)
a:启发猜想
师:羊吃到草的最大面积最大是圆形:
1、这个圆的面积有多大猜猜看;
2、试想圆的面积和哪些条件有关?
3、怎样推导圆的面积公式?(生试说)
b:分组实验,发现模型
1、你摆的是什么图形?
2、你摆的图形与圆的面积有什么关系?
3、图形各部分相当于圆的什么?
4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。
1师:要求圆的面积必须知道什么?
b完成课后“做一做”
c一个圆的直径是10厘米,它的面积是多少平方厘米?
d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
3应用知识解决身边的实际问题(知识应用)
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
圆的面积教学设计方案篇三
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
圆的面积公式的推导及应用公式计算。
圆面积公式的推导。
转化前后各部分间的对应关系。
一、导入新课:
提出问题:
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)
1、在推导的过程中你发现圆的什么变了?(板书:形状)
2、在推导的过程中你发现圆的什么没变?(板书;面积)
(二)、探讨第一问:
a:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
b:多媒体出示8等份圆。
2、学生汇报讨论结果。
3、媒体演示8等份。
c:多媒体出示32等份
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
d:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
f:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想
学生讨论。
(三)探讨第二问:
a:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
2、长方形的面积就是谁的面积?(教师板书)
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)
板书:长方形面积=长×宽
圆的面积=圆周长的一半×半径
b:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)
c:推导出圆的面积并且用字母表示。(教师板书)
d:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何
解决此问题?
4、根据下面条件,求出各圆的面积。
c=6。28米r=1分米d=20毫米
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结
圆的面积教学设计方案篇四
本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习关于平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。
学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。
知识与技能:
2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。
经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。
感悟数学知识的内在联系,体验发现新知识的`快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。
教学难点:
圆片、课件。
圆的面积教学设计方案篇五
本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。
本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。
第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。
1、经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆的面积计算公式计算圆的面积。
3、在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。
圆形纸片、剪刀、多媒体课件等。
教学过程教师活动学生活动
一、谈话引入,揭示课题
二、探究新知。
1、第一次探究,明确思路,体会“转化”的数学思想方法
2、第二次探究,明确方法,体验“极限思想”
3、第三次探究,深化思维,推导公式。
4、解决问题
5、小结
三、知识应用(出示一个圆)大家看,这是什么图形?
师:你已经掌握圆的哪些知识?
师:关于圆你还想探讨什么?
(板书课题:圆的面积。)
师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。
在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。
师:噢,你想把圆转化成我们学过的三角形来求它的面积。
师:谁还有不同的方法?
师:这像我们学过的什么图形?
师:你想把圆转化成平行四边形来求它的面积,是不是?
师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)
师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。
师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。
师:为什么要折这么多份?
师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)
师:你发现了什么?
师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。
师:能让拼成的图形更接近平行四边形吗?
师:哪个小组分的份数更多?
(教师让另一组展示自己平均分成16份后拼成的图形。)
师:和前两次拼成的图形比,又有什么变化?
师:如果要让拼成的图形比它还接近平行四边形,怎么办?
师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)
师:把这圆平均分了64份,看拼成新的图形呢?
圆的面积教学设计方案篇六
1.知识与技能目标:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
3.情感与价值观目标:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:认识圆及其特征,让学生初步学会用圆规画圆。
教学难点:画圆,用圆的知识来解释和解决有关实际问题。
课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件
圆的面积教学设计方案篇七
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
推导出圆的面积公式及其应用。
圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图
1、以前我们学过哪些平面图形的面积?
3、回忆一下平面四边形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
5、转化后的图形与原来的图形面积相等吗?
圆的面积教学设计方案篇八
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
一、引导估计,初步感知。
2、估计圆面积大小与半径的关系。
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
三、应用公式,解决问题
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
四、巩固练习
1、练习十九1求课始出示的光盘的面积
五、这节课你有什么收获?你认为重点的
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
六、课堂作业
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
【本文地址:http://www.pourbars.com/zuowen/3449400.html】