2023年平面直角坐标系的评课稿 平面直角坐标系说课稿(实用8篇)

格式:DOC 上传日期:2023-09-14 09:12:19
2023年平面直角坐标系的评课稿 平面直角坐标系说课稿(实用8篇)
时间:2023-09-14 09:12:19     小编:薇儿

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

平面直角坐标系的评课稿篇一

从学生最熟悉的环境(教室)入手,抽象出用“一对有序实数”来表示平面上点的位置的数学问题,显得非常自然。这时老师也不要急于给出直角坐标系的概念,而是给学生一段时间去思考、去交流。把学生的思想和法国著名数学家---笛卡尔当时的思法进行自然结合,让学生体会成功的喜悦感,调动学生学习的积极性,提高学习的信心和兴趣。

既有教师的讲解,又有独立分析、分组讨论交流、游戏活动等。教学的全过程都是围绕学生这个主体开展活动的,和学生一起探究概念的形成,知识的拓展,让学生参与知识形成的全过程,拓展学生学习空间,充分发挥学生的主体作用。

设计上注重了数学思想方法在课堂中的渗透,领悟数学知识发生与发展过程中的思想方法;注重知识“结构化”的形成,帮助学生形成了知识体系,完善了认知结构。有效培养学生的发散思维能力和对知识的分析、归纳能力。

本课采用了“学习单”的形式, 不仅体现了学生学习的全过程,还能比较全面地、及时地反映每个学生的学习情况,以便老师及时发现问,及时调整教学,对学有余力的学生及时给予激励和指导,对学习有困难的学生及时给予帮助和鼓励。

18.2.1平面直角坐标系

1、平面直角坐标系 2.由点写坐标:

(1)横(x)轴、纵()轴、坐标原点 各象限内点的坐标特征:

(2)象限:

(3)一、二、三、四 坐标轴上点的坐标特征:

2、点的坐标:p(x,) 平面上的点与有序实数对一一对应

(1)由坐标描点:

(2)点的坐标是:

(3)一对有序实数对点的对称关系:

平面直角坐标系的评课稿篇二

1、平面直角坐标系的建立(原点重合且互相垂直的两条数轴)。

2、由点找坐标(从已知点分别向横轴、纵轴作垂线,垂足对应的数分别是该点的横纵坐标)。

3、由坐标找点(例p(a,b),先在横轴上找到点的横坐标a,然后过横坐标所在的点作横轴的垂线,则这条垂线上的所有点的横坐标都为a,再在纵轴上找到纵坐标b,然后过纵坐标所在的点作纵轴的垂线,则这条垂线上的所有点的纵坐标都为b,两条直线的交点则为要找的点p)。

4、坐标平面内的点和有序实数对是一一对应关系。

坐标轴上的点不属于任一象限。

6、横轴上的点纵坐标为0,纵轴上的点横坐标为0.

7、点到横轴的距离是纵坐标的绝对值;

点到纵轴的距离是横坐标的绝对值。

若ab与y轴平行,则a等于m, 且b不等于n

点a(a,b),b(m,n)关于y轴对称,则b等于n,且a与m互为相反数。

点a(a,b),b(m,n)关于原点对称,则a与m互为相反数, 且b与n互为相反数。

10、数轴上两点间的距离等于它们坐标差的绝对值;

平面内两点间的距离等于它们横、纵坐标分别作差的平方的和的算术平方根。

11、点a(a,b),b(m,n),则线段ab中点的坐标分别是a、b两点横、纵坐标的平均数。

12、横、纵坐标相等的点在一、三象限夹角平分线上,反之亦然。

横、纵坐标互为相反数的点在二、四象限夹角平分线上,反之亦然。

如没有边在坐标轴上或与坐标轴平行,则分别过三个顶点作坐标轴的平行线,得到一个矩形。用矩形的面积减去周边直角三角形的面积即可得到要求三角形面积。

如求四边形的面积,一般都是采用分割的方法,也可考虑补的方法。

14、图形的平移有两个要素:平移方向和平移距离

图形在坐标系中的平移,可采用坐标的变化来描述。

图形左、右平移,横坐标减、加;

图形上、下平移,纵坐标加、减。

平面直角坐标系的评课稿篇三

从整套教材及本章两个方面分析了本节的知识不仅是后面坐标方法的简单应用的基础,也是后继学习函数的图像,函数与方程和不等式的关系等知识的坚实基础。从学生的认知规律来看,初一学生主要以形象思维为主,数形结合思想意识的形成是本节的重点和难点。在此基础上,制订了合理的教学目标及教学重点和难点,在制订教学目标时,不仅有知识与技能目标,更注重过程与方法目标和情感态度与价值观目标,同时,注重数形结合思想的形成这一难点的突破。

根据本节课的特点主要运用了情景教学法和发现教学法,激发学生的探索欲望,激活学生的思维,充分体现教师主导与学生主体相结合。呈现学生独立思考、自主探究、合作交流的学习模式。

1、创设情境,孕育新知

情境1:引导学生借助数轴来解决问题,使学生将新旧知识联系起来,符合学生的认知规律,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上这一新课程理念。

情景2:从学生熟知的生活情境入手,让学生思维实现从一维向二维的过渡,同时让学生感受数学与现实生活的紧密联系,激发学生的兴趣与探究欲望。

2、引导发现,探索新知

通过情景设置和问题的提出,让学生对数学家以及他的贡献有所了解,从而对学生进行数学文化方面的熏陶和理想教育, 并为下一步介绍平面直角坐标系做好铺垫,同时,在活动中培养学生的探究、合作、交流的能力。

问题3、4的解决,是本节课的核心环节。教师的讲解配以多媒体的直观演示,能更好的突破难点,将枯燥的知识趣味化,同时,及时的反馈练习,让学生将知识转化成自身的技能,从而更好的实现本节课的教学目标。

3、分层练习,巩固新知

通过分层练习,让每一位学生都能运用自己在本节课所掌握的知识解决问题,体验成功的喜悦,同时,根据新课标“让每个学生都获得自己力所能及的数学知识”这一理念,让不同的学生有不同的收获与发展。

4、知识小结,收获新知

一方面对本节课的知识点作一个复习与小结,另一方面,让学生学会梳理自己的思路,养成良好的学习习惯。整个教学过程中,我通过设计以上四个教学活动,引导学生从已有的知识出发,主动探索具体的生活情境问题,积极参与合作交流,获取知识,发展思维,形成技能,同时也让学生感受数学学习的乐趣。

本节的板书设计突出了两个重点:构成平面直角坐标系的三要素,点的坐标的特点。

本节课的教学过程,立足于问题情境的创设,将原本枯燥的知识兴趣化,教师在教学中做好引导者,让学生在自主探究,合作交流中获取知识,体现出教师为主导,学生为主体,练习为主线的教学理念和教学规律,注重学生能力的培养和情感教育,多方位地体现新课标的理念。

平面直角坐标系的评课稿篇四

1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

重点:理解平面直角坐标中点与数的一一对应关系;

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教师准备四张大的纸质坐标格子。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是—4,点b数轴上的坐标是2;我们说坐标是3。5的点,也可以在数轴上唯一确定。

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)

教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的评课稿篇五

“平面直角坐标系”是人教版数学课本第七章的内容,这课的内容十分重要,是数与行之间的重要桥梁,通过对平面直角坐标系的引入,加强了数与形之间的联系,它是解决数学问题的一个强有力地工具,这次听评课的内容就是“平面直角坐标系”。

各项得分如下:教学设计:28分;课堂管理:10分;表达传授:38分;板书设计:9分;教学反思:10分。共计95分。

教学设计:整体的教学设计是很成功的运用了多媒体教学,是数学课很生动形象。本节内容由确定电影院中座位的位置、整齐的升旗队伍等实际背景出发,引出有序实数对,进而引出平面直角坐标系,。通过对坐标系的研究,认识坐标的有关概念和建立坐标的方法,并会利用直角坐标系进行数与形的转换,结合学习内容的特点,采用独立思考、探究和归纳等方法给学生流下了很大的思考空间,我认为美中不足的是整节课都是学生在独立思考,而并没有分组讨论,像一些比较难的问题,应该大家在一起讨论,这样理解的才会更深刻。虽然在课堂上有一些意外,但应对的很好,电脑没电了,能够迅速转用板书做总结。

课堂管理:整节课都比较严肃,所以没有学生随便说话,课堂纪律非常好,因为以前在课堂上已经养成了好的习惯,那就是学生在昨晚练习题以后都会主动拿自己的答案给老师看,很主动值得表扬。学生能够自己积极主动地学就省了老师很多精力,课堂管理很不错。

表达传授:穆同学对教材内容十分熟悉,不用看课本,只有课件就把一节课讲得很顺畅,很有条理报答传授的内容还是很不错的。声音很洪亮,教态很大方,但是有些过于严肃,脸上没有表情,使整个课堂的氛围不活,给人的感觉有点像军队式的训练。但是讲课的内容不够详细,只是很简单的提了一遍,学生回答对了以后并没有做详细的讲评,还有就是在总结的时候有时候没有用术语。我认为在表情和态度方面穆同学还需要进一步的改进。

板书设计:板书从整体上来说很有条理,虽然有课件,还能够把重点给学生们板书出来,很值得学习。通过学生们在黑板上做题,画直角坐标系,以及老师的总结概括,把整节课的内容的重点都板书出来了,使人一目了然,字写得很漂亮,但是不太整齐,有点随意,总的来说还不错。

教学反思:穆同学课后很认真的看了录像,不自己就找出了自己的缺点说自己还有很多地方需要改进,我们大家也都给她提了意见,她都虚心听取,感受最深的就是,这节课上得有点严肃,表情不丰富。之后,她能够认真的进行教学反思,希望她下一次能够做得更好。

平面直角坐标系的评课稿篇六

1.教材的地位和作用

“平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。是今后学习函数、函数与方程、函数与不等式关系的必要知识。所以平面直角坐标系是沟通代数和几何的桥梁,是今后学习的一个重要的数学工具。

2.学情分析

学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过上一节《怎样确定平面内点的位置》的学习,对平面上的点由一个有序数对表示,有了一定的认识。

如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。

3.教学重难点及突破

基于对本节课的认识和学生的学情分析,我将本节课的重点确定为:理解平面直角坐标系及相关概念,能由点写出它的坐标及相关特征,难点确定为:平面直角坐标系中点与有序数对之间的一一对应与数形结合意识的培养。要达到本节课的目标我认为除了要加强学生多练多探索来认识有关的知识外,还必须在“激发学生的学习兴趣”上下功夫,尽量调动学生的学习积极性。

4.教学目标

根据新课标要求和学生现有知识水平,从三个方面提出本节课的教学目标:

知识与技能:

1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;

2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。

过程与方法:

经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想,体会数学源于生活,初步体验将实际问题数学化的过程和方法。

情感态度与价值观:

揭示人类认识世界是由特殊到一般,由具体到抽象的认知规律,激发学生勇于探索的精神。

教法:1.自主探索法。用创设情景引导学生从生活实践自主探索新知识;

2.讲练讨论法。教师讲练引导学生从坐标系概念获得由点求坐标。

3.游戏激趣法。组织学生进行游戏活动,巩固提高获得的知识,调动学习积极性。

教学媒体的使用上,用多媒体课件与传统教学方式相结合,对本节课的教学是非常必要的,充分应用多媒体教学直观、形象的优势,在展示坐标平面的建立、坐标的确定上加快了课堂节奏,增大了课堂容量。同时为克服多媒体教学的局限性,利用黑板进行必要的板书,进行适当的演示引导学生正确使用作图工具进行严谨作图,并帮助解决课堂中的突发问题。

学法:按新课标理念,倡导学生自主主动探索、学习知识,尽可能把“钥匙”交给学生自启知识之门,大胆把课堂交给学生;用讨论探索知识,培养创新意识;培养学生自学能力。

三.说教学过程

(一)创设情景,引入新课

课件展示某城市旅游景点示意图,导入:假如你是导游,你是如何确定各个景点的位置的?.......这就是本节课要研究的问题。

设计意图:通过提供现实背景吸引学生注意,激发学生的学习兴趣。

(二)学生自学,提出疑问

指导学生自学课本第49页和50页,并回答问题。

1、由条而且有的数轴,组成平面直角坐标系。

3、两条数轴的交点为平面直角坐标系的点。

4、直角坐标系分为几个象限?如何区分?

回到刚开始的图形,学生自主思考:

2.你能分别用有序数对表示它们的位置吗?

设计意图:锻炼学生的自主学习能力,带着问题阅读课本,经历自主探索的过程,可以让学生加深记忆。以旅游景点为背景,让学生思考身边熟悉景点位置及其表示方法,自然亲切,学生容易接受。

(三)小组讨论,探索新知

如何确定平面直角坐标系中点的位置以及点的坐标的表示方法。

让学生依据对平面直角坐标系的理解,画出平面直角坐标系,并结合图形确定点的位置。

(1)已知平面内一点q,如何确定它的坐标呢?

(2)若已知点p的坐标为(a,b),如何确定点p的位置呢?

(为了学生更好地叙述坐标的产生,教师可把这种叙述方式固定下来“过点a作横轴的垂线,垂足对应的数字是3,3叫作点a的横坐标,过点a作纵轴的垂线,垂足对应的数字是2,2叫作点a的纵坐标,因此点a的坐标是a(3,2),记忆用一句话表示:先横后纵,逗号隔开,加上括号。)

设计意图:通过学生自主探究,培养其自学能力和科学探究能力。

(四)操作演练,培养技能

完成例1,例2,教师讲解。

(五)拓展提升

参照图形,回答:各象限内的点的坐标有何特征?

坐标轴上的点的坐标有何特征?

学生分组交流、合作,以小组为单位总结发言。

设计意图:培养学生分析问题、解决问题的能力和口语表达的能力。

(六)反思总结,布置作业

1.通过本节课的学习,你收获到了什么?

2.你觉得画平面直角坐标系要注意哪些事项?

作业:必做题:课本第52页习题11.2a组2.3

选做题:课本第52页习题11.2b组2

【后记】王老师的说课稿基本符合要求,作为参加工作一年多的年轻教师,应该说付出了不少的心血。放在这里,供老师们思考。王老师对于教材的分析、学情分析、重难点的突破应该说还是思考了许多的。

平面直角坐标系的评课稿篇七

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学、

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

例3已知q(a,b),分别按下列条件求出p的坐标

(1)p是点q关于点m(m,n)的对称点

(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

2、利用平面直角坐标系解决相应的数学问题。

六、课后作业:

平面直角坐标系的评课稿篇八

本章教学时间约需7课时,具体分配如下(仅供参考):

数学活动 

(一)本章知识结构

(二)内容安排

(三)课程学习目标

1.通过实例认识有序数对,感受它在确定点的位置中的作用;

5.结合实例,了解可以用不同的方式确定物体的位置.

(一)注意加强知识间的相互联系

(二)突出数形结合的思想,体现平面直角坐标系的作用

(三)注重学生的认知规律

(四)内容编写生动生动活泼

(一)密切联系实际

(二)准确把握教学要求

(三)注意留给学生思考的空间

【本文地址:http://www.pourbars.com/zuowen/3454630.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map