作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
开云KY官方登录入口 数学必修一教案篇一
【知识与能力】
1.掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系
【情感态度与价值观】感受数形结合的.思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容—数轴(板书课题)
(二)得出定义,揭示内涵
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点
(2)标正方向
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画
(四)动手练习,归纳总结
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育
3、通过数轴比较有理数的大小。观察类比温度计回答问题
(1)在数轴上表示的两个数,(右)边的数总比(左)边的数大;
(2)正数都(大于)0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的大小:-1.5,0.6,-3,-2
巩固所学知识
(五)、归纳小结,强化思想
师生总结本课内容。
1、数轴的概念,数轴的三要素
2、数轴上两个不同的点所表示的两个有理数大小关系
3、所有的有理数都可以用数轴上的点来表示
师:你感到自己今天的表现怎样?
习题2.21、2、3
选作第4题
开云KY官方登录入口 数学必修一教案篇二
【知识与能力】
1. 掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】 经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系
【情感态度与价值观】 感受数形结合的思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容―数轴(板书课题)
(二)得出定义,揭示内涵
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点
(2)标正方向
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画
(四)动手练习,归纳总结
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育
3、通过数轴比较有理数的大小。观察类比温度计回答问题
(1)在数轴上表示的两个数,(右 ) 边的数总比 ( 左)边的数大;
(2)正数都(大于 )0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的.大小: -1.5 , 0.6, -3, -2
巩固所学知识
(五)、归纳小结,强化思想
师生总结本课内容。
1、数轴的概念,数轴的三要素
2、数轴上两个不同的点所表示的两个有理数大小关系
3、所有的有理数都可以用数轴上的点来表示
师:你感到自己今天的表现怎样?
习题2.2 1、2、3
选作第4题
开云KY官方登录入口 数学必修一教案篇三
1.把握写景抒情散文情景交融的特点,提高对情景交融意境的鉴赏能力。
2.学习作者运用语言的技巧:比喻、通感的巧妙运用,动词、叠词的精心选用。
3.训练整体感知、揣摩语言的能力。
过程与方法
1.本文语言精美,写景状物传神,应加强朗读训练,让学生自然地受到感染,体会文章的韵味。
2.理解关键语句,提高对作者在文中表达的思想感情的领悟能力。
情感态度与价值观
1.引导学生关注社会,追求理想。
2.培养学生健康的审美情趣。教学重点体味作品写景语言精练、优美的特点及其表达效果。教学难点品味、领悟课文情景交融,“景语”“情语”浑然一体的写作特点。
教学方法诵读法、感知法、品味法
教具准备课文录音带、多媒体课件
教学时间安排二个课时
第一课时
一、导语设计
李白在《月下独酌》里说:“花间一壶酒,独酌无相亲。举杯邀明月,对影成三人。”——在这里,“月”成了诗人排遣内心深处孤独寂寞的一种载体。
二、文本解读
(一)知识积累
1、朱自清的生平和创作。朱自清,原名自华,字佩弦,号秋实。祖籍浙江绍兴,1898年生于江苏东海。1903年随家定居扬州。1916年中学毕业后,考入北京大学预科班,次年更名“自清”,考入本科哲学系。毕业后在江苏、浙江等地的中学任教。上大学时,朱自清开始创作新诗,1923年发表的长诗《毁灭》,震动了当时的诗坛。1924年出版诗与散文集《踪迹》,1925年任清华大学教授,创作转向散文,同时开始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是诗人、散文家、学者,又是民主战士、爱国知识分子。毛泽东称他“表现了我们民族的英雄气概”。著作有《朱自清全集》。
3、借助注解和词典读懂《采莲赋》。
(二)信息筛选播放录音(或教师朗读)
1、学生边听边思考如何划分层次,并归纳大意。
明确:全文分三部分:
第一部分(1):月夜漫步荷塘的缘由。(点明题旨)
第二部分(2-6):荷塘月色的恬静迷人。(主体)
第三部分(7-10):荷塘月色的美景引动乡思。(偏重抒情)
(三)合作探究
师生共同解析第四段,看作者是怎样从多角度来描摹荷塘美景的?明确:先写满眼茂密的荷叶,次写多姿多态的荷花、荷香,最后写叶子和花的一丝颤动以及流水。层次井然,形象精确。——这是按观察的角度,视线由近及远、由上而下的空间顺序来写的。以上是顺序特点,细分析,还可以看出作者的匠心:a.抓静态与动态的结合,把荷塘写“活”。而且,作者笔下的景物都是“动”的,“静”不过是“动”的瞬间表现,扬静而情动。
b.抓可见与可想的结合,写出了散文的神韵。所谓“可想”,是指由“可见”引起的合理联想,把不可见的景物写得很有风采。
(四)能力提升
学生自己阅读第五段,合作讨论作者在这里是如何描写月色的。
明确:作者把荷叶和荷花放在月光下面,一个“泻”字,给人一种乳白色而又鲜艳欲滴的实感;一个“浮”字又表现出月光下荷叶、荷花那种缥缈轻柔的姿容。文章似乎仍在写荷叶、荷花,其实不然,作者是通过写叶、花的安谧、恬静,衬托出月色的朦胧柔和。又如文章写“黑影”和“倩影”,也是写月色,因为影是月光照射在物体上产生的。树影明暗掩映,错落有致,反衬月光轻盈荡漾。月色本是难以描摹的',所以作者透过不同的景物,从不同的角度去写月色,使难状之景如在眼前。
(五)分析鉴赏
1、第五段“酣眠”“小睡”各指什么?有无深层含义?
明确:“酣眠”比喻朗照,“小睡”比喻被一层淡淡的云遮住的月光。至于它的深层含义应该联系作者的心态来看,他不希望过于激烈的行为,他喜欢一种平和的心态,正如我们前面分析的那样,他做不到投笔从戎,他要寻找安宁平和的生活。对景物的喜好折射出作者的心态。
2、课文第五段,写月光用“泻”不用“照”“铺”,其好处是什么?(解答这个问题,不妨请学生把“照”和“铺”字代入句中读一遍,学生就知道了。
明确:“泻”是承上面比喻句“如流水一般”而来的,“泻”字有向下倾的势态。“照”字和“铺”字就没有这个效果。
3、作者为什么会由光和影联想到名曲?
明确:这是使用通感的修辞手法,光与影是视觉形象,作者却用听觉形象来比喻,这就是通感的一种,其相似点就是和谐。第四段写荷花的缕缕清香,微风传送,像远方飘来歌声一样动人心怀,这幽雅淡远的感受也只有在月夜独处时才会有,这也是通感,把嗅觉形象转化为听觉形象,它们之间的相似点就是似有似无、时断时续、捉摸不定。
三、课堂小结
所谓“意境”,指的是外界的人事景物(客观)与人的思想感情(主观)相融合而形成的一种天人合一、情景交融的境界。这种天人合一、情景交融越是天衣无缝、水乳交融,散文就越具有美感。《荷塘月色》做到了这一点,所以它具有一种意境美。
四、作业设计
背诵第四、五、六段。
第二课时
一、导语设计
二、文本解读
(一)合作探究指导学生理解“通感”的特点及其作用。明确:通感:就是人的各种感觉之间的交流、沟通、转移。钱钟书先生说过,“在日常经验里,视觉、听觉、触觉、嗅觉、味觉往往可以彼此打通或交通,眼、耳、舌、鼻、身,各个官能的领域可以不分界限。颜色似乎会有温度,声音似乎会有形象,冷暖似乎会有重量,气味似乎会有锋芒……”(《通感》。)例如:“微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声似的。”
a.本体——花香(嗅觉)喻体——渺茫的歌声(听觉)b.作用:把花香的特点写清了,生动形象。
c.相似点:立于微风中嗅馨香(时有时无)——听远处高楼传来的歌声(时断时续)再如:“但光与影有着和谐的旋律,如梵婀玲上奏着的名曲。”
(二)能力提升
1、文章抒情的语句主要有哪些?
明确:第一段:这几天心里颇不宁静。
第二段:没有月光的晚上,这路上阴森森的,有些怕人。今晚却很好,虽然月光也还是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我爱热闹,也爱冷静;爱群居,也爱独处……便觉是个自由的人。……我且受用这无边的荷香月色好了。
第六段:但热闹是它们的,我什么也没有。
第八段:这真是有趣的事,可惜我们现在早已无福消受了。
第十段:这令我到底惦着江南了。
2、作者的思想感情在文中是怎样变化的?
明确:因为这几天心里颇不宁静,忽然想起日日走过的荷塘,在满月的光里,总该另有一番样子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚却很好,我可以享受这无边的荷香月色。荷塘月色的确很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦胧和谐,令人心醉。荷塘四周非常幽静,只有树上的蝉声和水里的蛙声最热闹,而我什么也没有。忽然又想起采莲的事情来了,那真是有趣的事,可惜我们现在早已无福消受了。采莲令我惦着江南了,这样想着回到了家里。有人把这篇文章所表现的思想感情概括为“淡淡的喜悦,淡淡的哀愁”,是很贴切的,但作者的感情底色是“不宁静”。
(三)分析鉴赏
1、第六段写“热闹是它们的,我什么也没有”,作者为什么会如此伤感?
明确:作者想寻找美景,使自己宁静,平息自己矛盾的心情而不得,当然伤感。
2、第七段采莲与文章主体有什么关系?为什么会想起采莲的事情?
明确:以采莲的热闹衬托自己的孤寂,且荷莲同物,作者又是扬州人,对江南习俗很了解。
明确:一方面有照应文章开头的作用,但主要目的还是以静写动,以静来反衬自己心里的极不宁静。心里的不宁静,是社会现实的剧烈动荡在作者心中引起的波澜。全篇充满着动与静的对立统一:社会的动荡与荷塘一隅的寂静,内心的动荡与内心的宁静形成对立统一,文章开头心里不宁静,在月夜荷塘幽美的景色的感染下趋于心静,走出荷塘又回到不宁静的现实中来,也形成对立、转化。
三、课堂小结
这篇作品获得人们特别赞赏的原因,就在于它写景特别工细。朱自清在表现月色下的荷塘和荷塘上的月色这两个组成部分的时候,还进一步作更精细的分解剖析,把这两个部分再分解剖析成许多更小的部分,然后逐一描写并且从景物观赏者的视觉、嗅觉、听觉,以及景物的静态、动态等角度,写出它们的种种性状,从而把景物表现得格外细腻。
四、作业设计
研究性学习参考论题。请你就以下论题中的一个或另拟论题,从网络上寻找有关资料,写出你的研究结果。
1、走近朱自清
2、朱自清为什么“不宁静”?
3、谈《荷塘月色》的写景艺术
4、谈《荷塘月色》的感情线索
开云KY官方登录入口 数学必修一教案篇四
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点
.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
教学过程
一、练习讲解:《习案》作业十三的第3、4题
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
开云KY官方登录入口 数学必修一教案篇五
初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从开云KY官方登录入口 数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。
2、思维能力和运算能力的进一步强化
初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对开云KY官方登录入口 数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与开云KY官方登录入口 数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。
3、抓住学科特点,做好顺利过渡
开云KY官方登录入口 数学知识量大,理论性、综合性强,同时开云KY官方登录入口 课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好开云KY官方登录入口 数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入开云KY官方登录入口 并能尽快适应开云KY官方登录入口 的数学学习。
开云KY官方登录入口 数学必修一教案篇六
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:
教学重点:曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:
启发、诱导发现教学.
四、教学过程
(一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。
圆参数方程(为参数)
(2)圆参数方程为:(为参数)
2.写出椭圆参数方程.
(二)、讲解新课:
如果已知直线l经过两个定点q(1,1),p(4,3),
那么又如何描述直线l上任意点的位置呢?
2、教师引导学生推导直线的参数方程:
(1)过定点倾斜角为的直线的
参数方程
(为参数)
【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.
(2)、经过两个定点q,p(其中)的'直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。
(三)、直线的参数方程应用,强化理解。
1、例题:
学生练习,教师准对问题讲评。反思归纳:
1)求直线参数方程的方法;
2)利用直线参数方程求交点。
2、巩固导练:
补充:
1)直线与圆相切,那么直线的倾斜角为(a)
a.或b.或c.或d.或
2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.
解:直线化为普通方程是,
该直线的斜率为,
直线(为参数)化为普通方程是,
该直线的斜率为,
则由两直线垂直的充要条件,得,。
(四)、小结:
(1)直线参数方程求法;
(2)直线参数方程的特点;
(3)根据已知条件和图形的几何性质,注意参数的意义。
(五)、作业:
补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为
【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。
解析:由题直线的普通方程为,故它与与的距离为。
五、教学反思:
开云KY官方登录入口 数学必修一教案篇七
(一) 知识定位及复习策略
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。 复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。 本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
(二) 规律方法总结
1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。 2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。 3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。
基本初等函数
(一) 知识定位及复习策略
基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。
(二) 规律方法总结
1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。
2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。
开云KY官方登录入口 数学必修一教案篇八
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3.函数方程思想的几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
开云KY官方登录入口 数学必修一教案篇九
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,
教学过程
等比数列性质请同学们类比得出.
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.
2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为 .
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1= ,q= .
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.
开云KY官方登录入口 数学必修一教案篇十
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
3、正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(2)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
开云KY官方登录入口 数学必修一教案篇十一
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,夯实基础
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
三、培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
四、“转化”思想的应用
解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
五、建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
【本文地址:http://www.pourbars.com/zuowen/3782709.html】