总结不仅让我们能够更好地回顾过去,还可以为未来的发展提供参考和借鉴。怎样选择适合自己的音乐风格和乐器?下面是一些总结的范文,供大家参考和借鉴。
人工智能论文大学生篇一
智能交通系统(intelligent transportation systems,简称its)是将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术及计算机处理技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。its能有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并以推动社会信息化及形成新产业而受到各国的重视。目前已形成世界二十一世纪的发展方向。
交通仿真是智能交通领域的重要分支,它是利用最先进的计算机技术,通过仿真模拟的方法来分析交通问题,辅助交通管理人员做决策。传统上,数学推导、科学实验是进行科学研究、解决科学问题的主要方法。对于交通问题来说,由于参与交通的人很多,影响交通出行的因素也很多,人们很难、甚至无法对交通问题建立精确的数学模型。同时,由于安全、法规,以及开销方面的原因,进行现场交通实验通常也是不可行的。而交通仿真恰恰能够有效地解决上述两个方面的困难。
然而,传统的交通仿真由于设计理念上的原因,并不能从根本上有效地解决交通问题。这是因为,交通系统是一个庞大的复杂系统,必须用对付复杂系统的方法来处理,也就是要用综合的方法,而不是还原分解的方法来处理。
1)城市交通系统是由经济、环境、人口等因素综合作用的结果,必须全面综合地考虑城市交通和这些系统之间的关系。例如,不能为例城市交通问题的解决,而导致城市生态恶化,危害人居环境;不能为了城市交通的畅通,阻碍城市社会经济活动的健康发展。我们必须在已有工作的基础上,突破传统思维,探索研究此类复杂系统的新途径,而基于人工系统的研究方法正是这种有效途径之一。
2)城市交通问题不存在“一劳永逸”的解决方案。城市交通系统涉及人与社会的动态变化,本身也在不断变化和发展之中,不可避免地需要一个不断深化地认识过程,这类系统实际上不存在精确完备的整体解析模型。因此,无法“一劳永逸”地解决城市交通问题,我们需要基于“不断探索和改善”的'原则,研究建立有效可行的计算实验方法体系,为不断地完善城市交通系统的综合可持续发展方案提供科学依据。
3)城市交通问题不存在一般意义下的最优解,更不存在唯一的最优解。首先,基于解析模型的最优解与假设条件直接相关,具有条件敏感性,但对于城市交通这样的问题,假设条件与实际情况往往存在很大差别。其次,解决这些问题一般不存在单一的优化指标,而多层次多目标优化往往导致多个甚至无数个解决方案,就连采用近似模型的多目标优化也是如此。再者,对于这类复杂系统,有时甚至连确定一个量化的综合优化指标也有困难,特别是由于复杂系统长期行为的不可预测性,试图求解其某一最优化解决方案本身就是不可行的。因此,我们应当接受有效解决方案的概念,而且还要接受一般情况下存在多个有效解决方案的事实。在这种情况下,我们应该利用平行系统方法,追求具有动态适应能力的有效解决方案。
基于以上分析,中国科学研自动化所王飞跃研究员提出了人工交通系统的概念。其基本思想是利用人工社会的理论与方法,把交通仿真推向更高的层次、获得更广的视野。它利用基于代理的建模、面向对象的编程和并行分布式计算等方法和技术,“生长”和“培育”交通系统,即“人工交通系统”。
利用人工交通系统解决问题的思路跟改革开放摸着石头过河差不多,不断探索和改善,使过程、方法更科学化、系统化、综合化,不断改善探索建立城市交通、物流、生态综合发展的理论和方法体系。
三是平行管理运行,虚拟交通系统与实际交通系统相结合,直接采集现实交通数据,进行超前运算,以判断可能发生的交通事件,提前采取预防措施,为交通的高效畅通提供保障。
1)在宏观认识上,人工交通系统不是单纯的讨论交通自身的问题。相反,人工交通系统将交通看作社会整体的一个子系统,与经济、人口、环境、气候等子系统具有平等的地位,并将各个子系统之间的相互衔接、相互联系、相互作用和相互影响作为研究的重点之一。
2)在仿真方法上,人工交通系统属于微观仿真的范畴,但是不局限于研究局部的交通问题。人工交通系统面向大区域的仿真研究,采用复杂性科学中“涌现”的原理,在底层建立单个交通出行元素的代理模型,通过大交通区域内单个代理模型之间的相互作用,“涌现”出宏观的交通现象。
3)在实现手段上,人工交通系统不能在单一、孤立的计算机上进行仿真,要使人工交通系统具备真实交通系统的分散性和社会性,必须采用先进的分布式计算方法,如网格和p2p等,在互联网上建立结构化、分散化的虚拟交通路网系统,并且通过终端界面将网络中的真实人吸引到人工交通系统的运行中来,以使每一个代理模型具有逼近现实的社会属性。
4)在仿真目的上,人工交通系统不是一味的追求逼近现实交通环境和状态。除此之外,人工交通系统可以通过调整参数、添加随机事件等方法产生现实交通系统可能但尚未发生的交通现象,用以制定突发事故的紧急预案、交通控制方案的预评估以及交通参与人员的培训等等。
人工系统说起来有一点抽象,其实说穿了很简单。第一是充分利用计算机技术的发展,第二是仿真与模拟的常态化。仿真不再是一个项目立项前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永远在。它是经验与知识的数字化、动态化和即时化,使人工影响现实,虚拟影响实在。
人工交通系统完善之后,人们可以像玩网络游戏一样,作为一个行人或司机加入到系统中,不必出门即可体验交通;交警同志可以在人工交通系统中学习指挥交通,而不必担心造成拥堵;交通分析人员可以利用人工交通系统研究各种突发事故对交通的影响,而不必担心人民的生命财产受到威胁;交通管理和决策人员可以在人工交通系统试验交通政策和方案,而不必承担决策失败的风险。
人工智能论文大学生篇二
随着新型科技的持续更新,工程中逐渐应用新科技,这也是科技朝着应用式与开放式方向发展的开始。电子工程在传统工程基础上的革新,随着人工智能化发展,逐渐转换为信息化产业链接。这一智能化技术机械生产明显减少,经济效益与产量提升,我国逐渐进入到智能化阶段。
(一)发展历程
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。
在生产线阶段,机械工程已逐渐发展到流水线生产,实现标准化大批量生产,这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力;灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场。
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研宄。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研宄就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研宄,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研宄仅仅是停留于简单映射层面,对于逻辑思维的研宄仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就。
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研宄方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的.支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显已经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研宂正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
智能同机械电子工程之间在相互影响的过程中,逐渐产生崭新的行业。首先通过现代科技逐渐,将人工智能融入到机械电子工程中,使机械工业发展潜力得到充分挖掘。其次随着机械电子工程发展难度的加大,对于人工智能也就提出来新的要求,这从某种程度上来推动了人工智能发展。在将机械电子工程与人工智能有效结合的基础上,促进社会生产力发展,同时也能促进有关经济产业的快速发展,这种效应将会对整个社会产生一定影响,使我国经济得到全面发展。
人工智能论文大学生篇三
随着数字智能技术的不断进步,人工智能技术在电气自动化控制系统中的应用也日益广泛。因此,在电气自动化控制系统中,为提高生产力水平、方便人们日常生活,需要加大对人工智能技术的应用研究,实现自动化体系的升级和发展需要。本文主要以人工智能技术的应用理论和现状入手,具体介绍了电气自动化控制中人工智能技术的应用对策,最终提高经济效益和社会效益。
电气自动化是一门实践性较强的应用性科学,主要研究电气系统的运行控制和研发。人类社会文明发展至今在科学技术方面的最大进步,主要是实现了系统中机械设备运行和控制的自动化和智能化。研究人工智能技术在电气自动化控制中的应用,有助于推动电气系统自动化的进一步发展,实现系统运行的智能化,使得其更加安全稳定,最终提高企业的生产效率,提高市场竞争力。
人工智能是一门新型的计算机科学,介于自然科学和社会科学边缘之间,研究对象主要是智能搜索、逻辑程序设计、自然语言问题和感知问题等。人工智能技术的本质就是模拟人类思维进行信息编码的过程,主要是结构模仿和功能模拟两种思维模拟方式。前者模拟形式主要是对人类大脑机制进行模拟,制造出类似人脑的机器设备;后者模拟主要是从人脑的功能角度出发,对人类大脑思维功能进行模拟。较为成功的典型事件就是现代的电子信息计算机,顺利地模拟人类大脑思维进行信息编码。
人工智能不是人的智能,更不是对人的智力功能的超越,其不同于人类大脑运行的显著特征主要有四个方面:是机械的无意识的物理过程;无社会性;不具备人类意识的创造力;功能是在人类大脑思维之后产生的。应用人工智能技术在电气自动化控制系统中,可以极大地节省人力资源,降低成本。同时,不控制目标模型就可以提高操作的准确度,降低误差。此外,这样还能保证产品的规范,提高性能。
近年来,人工智能技术得到了公众的高度重视,大多数的专业性高校和科研单位都对其在电气自动化系统中的应用开展了众多工作,现下的人工智能技术主要应用在电气设备的设计、事故及故障诊断和电气控制过程中的监控预警等工作。首先,在电气自动化系统中电气设备的设计方面,设备的结构设计较为繁琐复杂,涉及面较广,要求操作设计人员具备较多的实践经验。其次,在事故及故障诊断方面,人工智能技术可以利用模糊逻辑和神经网络等发挥优势,做好预警监控工作。最后,在电气控制过程中应用人工智能技术,主要依靠神经网络、模糊控制和专家系统三种方式,其中模糊控制应用较为普遍,以ai控制为主。
根据上部分分析的人工智能技术在电气自动化控制系统的应用现状,可知为实现电气自动化控制系统运行的高效性、提高人工智能技术的应用性,对策主要有以下三个方面:应用于电气设备设计、应用于事故及故障诊断和应用于电气控制过程。
3.1 应用于电气设备设计
根据诸多电气工程的实践证明,只有具备各相关专业的学科知识和技艺才能真正实现电气自动化控制系统的高效性,使其稳定运行。在电气设备的设计中应用人工智能技术,可以简化工作,降低人力成本。因此,企业拥有一批素质高的设计团队,这是电气自动化控制系统实现高效性的关键之一。此外,企业需要采取先进的人工智能技术进行电气设备的设计工作,尤其是结构设计工作。具体来说,人工智能技术在进行电气设备设计时主要是采用遗传算法升级计算机系统,全面提高产品的研发、设计和生产,优化设计产品。
3.2 应用于事故及故障诊断
电气故障诊断,指的是对电气自动化控制系统中机械设备的先关信息进行确定,判断技术和运行状况是否正常,如果出现异常,可以及时确定故障的具体内容和性质部位,找出故障原因并提出解决对策。而在电气设备运行时,不确定因素较多,使得系统容易出现各种类型的故障和事故,如果无法及时确定故障的性质和部位,将会给员工的人身安全带来威胁,企业也会承受较大的经济损失。因此,及时判断分析事故并做好故障诊断工作,是一项至关重要的工作。可以在传统的电气控制系统中,采取一些新型的.人工智能技术进行诊断。比如说,在诊断变压器的故障中,我们可以引入人工智能技术进行诊断,在节省人力物力的同时保证诊断的精确性,也可以在对发动机和发电机等电气机械设备进行事故诊断时引入人工智能技术,提高精确度,以达到良好的工作效果,实现企业的经济效益。
3.3 应用于电气控制过程
人工智能技术在电气自动化控制系统中起着关键性作用,是电气行业中的重要部分。实现电气自动化控制的人工智能化,有助于降低工作成本,提高工作效率,实现资源优化和最佳配置。在传统的电气自动化控制过程中,由于过程的繁琐复杂操作人员容易出现错误,而采取人工智能化技术则可以避免这些人为错误。人工智能技术主要采取神经系统的控制、专家系统的高效控制和模糊控制。现在最常用的技术方式是模糊控制,通过模糊控制借助直流电和交流电的传动最终实现电气自动化控制系统的智能化控制。模糊控制可以具体分为surgeno和mamdan两种表现形式,前者是后者的特殊情况,两者均用来调速控制。
在电气领域里,人工智能技术可以运用到日常操作中。我们可以利用家庭电脑实现对电气自动化控制系统的远程操作控制。具体来说,是通过采用人工智能技术预先设计好的既定程序控制操作过程,实现设备智能化,及时掌控全局。
综上所述,电气自动化控制中的人工智能技术的应用研究,既能实现工作效率的提高,还能降低运行成本,更好地实现电气系统的自动化智能化控制。此外,随着科学技术的飞速发展,人工智能技术在电气自动化控制中的应用面临着巨大的机遇和挑战,需要学者们不断研究和完善,使其得到更好的应用。
人工智能论文大学生篇四
人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。
人工智能;信息技术;智能教育
人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在开云KY官方登录入口 信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国开云KY官方登录入口 信息课程中人工智能教育做一下探讨。
(1)人工智能定义
人工智能(ai,artificial intelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。
(2)开设人工智能课程的意义
现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。
将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。
目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:
(一)教学条件参差不齐
开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。
(1)对硬件性能的要求
人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。
(2)对软件性能的要求
为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。
(二)对人工智能科学的认识不足
(1)学生的认识误区
提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。
(2)教师对人工智能学科开设存在偏见
一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在开云KY官方登录入口 开设。
(三)一线教师经验不足
在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任开云KY官方登录入口 信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。
(一)加强软、硬件建设
在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。
(二)端正认识,增强支持
作为教师要树立对开云KY官方登录入口 人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在开云KY官方登录入口 开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。
作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。
校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。
总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。
参考文献:
[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).
[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.
[3]教育部.普通开云KY官方登录入口 技术课程标准(实验稿).人民教育出版社,2003年4月.
[4]张家华,张剑平.开展开云KY官方登录入口 人工智能教学存在的问题及对策[j].
人工智能论文大学生篇五
十九世纪末到二十世纪以来科学技术得到了飞速的发展,在这个时期里很多学科都得到了提高和补充,学科间的关系也越来越密切,一系列利好因素的共同作用下,机械电子工程学得以产生并发展。
顾名思义,机械电子工程就是电子信息技术与传统的机械技术的一个结合,充分的发挥了两个不同学科在技术上的共同点,达到了物理上和信息功能上的连结。这是一个跨学科的尝试,更是一个挑战,它可以将所有的机械工程信息进行分析,达到智能化的目的。虽然依旧属于机械工程行业,但是显然已经拥有了自己的特点。
1)不同的设计方法
机械电子工程与传统工程相比,已经不是单一的一个学科,它已经发展成为了有很多技术和科学共同组成的一个新学科,并且在工程设计上充分的吸纳了信息技术、机械技术,并为了使工程的各模块结构布局更加完整,设计人员一般都会采取自上而下的设计方法。
2)产品上的差异
2机械电子工程的发展过程
机械电子工程学并不是一个孤立的学科,它与很多工程和技术都有着密切的联系,是机械工程学科和电子信息工程、智能管理技术共同作用下,形成的一个新的发展体系。在信息系统不断完善的过程中,机械电子工程体系也更加完善,并日益成熟。机械电子工程学的发展历程主要是这样的几个方面:
1)机械电子工程学的开端
机械电子工程学在刚起步的阶段,其主要的生产形式是手工生产,此时社会的生产能力很低,没有充足的劳动力资源,发展生产力变得异常艰辛。为了改变这样一个窘迫的状况,科学家进行了大量的研究和尝试,在一次次的失败中,机械工程终于得到了一定的发展。
2)机械电子工程学的高速发展阶段
在经历了起初艰难的开始阶段以后,机械电子工程迎来了高速发展时期,随着标准件生产在同一的流水线下得以实现,这一时期的生产已经具备了一定的标准,并且极大地刺激了生产力的发展。但是这样的生产模式并不是没有缺点的,生产的过程过于标准,使产品过于单一,满足不了不同用户和社会不断变化的需要。
3)机械电子工程的成熟阶段
经过了多年的发展,机械电子工程产业已经形成了一定的体系,并与现代化科学技术有了一定的融合,进入了现代机械电子发展阶段。归根结底,机械电子工程的发展是为了满足社会工作和生活的需要,现代社会工作节奏加快,生产也更加灵活,对机械电子工程提出了更高的要求,机械电子行业的特点是柔性制造,这也为机械电子同信息化社会的融合创造了条件。
3人工智能在机械电子工程的运用
人类社会的发展始终离不开能源、信息。在古代,生产力水平及其低下,人们对信息的获取能力也十分有限,能源和物质是维持人类生产生活的必需品。长久以来,人类往往都没有认识到信息的作用。随着人类文明的不断发展,生产力水平的不断提高人类对信息的概念逐渐了解,同时也产生了对信息的需求,信息的价值逐渐被发现。
随着电子计算机技术的逐渐应用,人类的生活发生了质的变化,人类社会至此进入了高科技的信息时代。人工智能系统作为电子技术发展的产物,在近两年出现,并且迅速的应用到了机械电子工程领域。
电子信息技术在方便快捷的同时,也存在一定的弊端,比如缺乏一定的稳定性,这使机械信息系统在输入和输出上就会变得十分混乱,并且不利于描述。以往的描述方法一般包括:建设规则库、推导数学方程、学习并生成知识。
一般的解析方法都比较精密、准确,但是应用范围十分有限,只能应用于比较简单的系统,而对比较繁琐复杂的体系,却不能够提供完整的解析式,必须依靠人工操作才能实现。随着人们对系统的要求越来越高,处理的信息变得复杂多样,信息的内容不仅包括数据的形式,也出现了数字信息和语言信息等新形式。为了适应时代形势的发展,人工智能处理方式以其复杂、不确定的特点成为了解析数学的新方法、新手段。
人工智能处理体系一般是这样进行分类的,模糊推理体系和神经网络体系。这两个系统存在着联系,也有所不同。模糊推理系统一般通过对大脑功能进行模拟,从而分析出语言的信号;而神经网络系统模拟的却是大脑的结构,通过对数字信号的处理得出参考数值。
1)模糊推理体系和神经网络体系的相同点
我们可以说,模糊推理体系和神经网络体系都是利用网络结构,然后在某一精度上趋近一个函数。
2)模糊推理体系和神经网络体系的不同点
(1)映射方式
在映射方式的运用方面,模糊推理系统运用域和域之间的映射,神经网络体系则是点到点的映射。
(2)物理性质
模糊推理体系与神经网络体系相比拥有更明确的物理性质。
(3)计算量和计算精度
模糊推理体系没有固定的连接,计算量和计算精度都十分有限,神经网络体系则很好的克服了这一点,在输入的过程中使每个神经元相互作用,大大的提高了计算量,并且能够保证较高的输出精度。
(4)储存方式
在储存信息的过程中,模糊推理体系采用的是比较规则的方式,神经网络体系则是利用分布式对信息进行储存。
社会作为一个不断发展变化的有机结合体,单一的处理手段是无法满足人类发展的需要的。为此,智能系统研究专家开始了对综合智能系统的开发与探索。综合智能系统是对以往人工智能体系的继承和发展,它能够融合以往两种智能体系的优点,使数学描述变得更加全面。
4结论
机械电子工程产业发展是我国工业信息化过程的一个写照,在工程制造的过程中充分利用现代化科学技术的巨大优势,实现了生产力的提高,满足社会发展的需求,机械电子工程和人工智能和完美结合实现了不同学科之间的融合,为工业信息化的发展提供了成功经验和新思路。
人工智能论文大学生篇六
人工智能(artificialintelligence),英文缩写为ai,也称机器智能。“人工智能”一词最初是在1956年的dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay—ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(internationaljointconferencesonartificialintelligence即ijcai)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“prospector”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的`改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的ai技术,开发更高级的ai通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。但是,从人工智能目前的发展现状来看,其研究也存在一定的问题,这些主要表现在以下三个方面:
1、宏观与微观隔离
一方面是哲学、认知科学、思维科学和心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次尚待研究,目前还无法把宏观与微观有机地结合起来和相互渗透。
2、全局与局部割裂
人工智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。这就导致了三者之间存在着明显的局限性。因此,必须从多层次、多因素、多维和全局观点来研究人工智能,才能克服上述局限。
3、理论与实际脱节
大脑的实际工作,在宏观上已知道不少;但是智能的千姿百态,变幻莫测,复杂的难以理出头绪。在微观上,我们对大脑的工作机制知之甚少,似是而非,这也使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某些方面表现出“智能”就已经算是相当的成功。
人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的发展方向。人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。因此,要想从根本上了解人脑的结构和功能,完成人工智能的研究任务,就必须去寻找和建立更新的人工智能框架和理论体系,进而为人工智能的进一步发展奠定坚实的理论基础。我们坚信在不久的将来,人工智能技术的应用与发展必将会给人们的生活、工作和教育等带来更大的影响。
人工智能论文大学生篇七
长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学(cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
"智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。
我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问:目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢?
答:ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的`不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
答:我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
问:请您预测一下人工智能将来会向哪些方面发展?
答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
在一年一度at&t实验室举行的机器人足球赛中,每支球队的"球员"都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。
这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。
我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--"蓝色牛仔"(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。
麻省理工学院的ai实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
人工智能论文大学生篇八
〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。
〔关键词〕人工智能,数论,简单性原则
人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比ai与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。
人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。
“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。
毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。
毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。
图灵与冯·诺依曼的人工智能机器也受毕达哥拉斯主义数论的影响,他们运用数的和谐以及数量关系的计算尝试让“莱布尼兹之梦”在现实生活中得以实现。图灵通过基本的数学运算将数学运算符号化为运算符,并用一个无限长纸带来表述计算过程,制造出了图灵机,这就是莱布尼茨所说的“通用机”。图灵认为人脑类似通用机,图灵提出一台计算机在多大程度上可以模仿人的活动,进而提出“机器能否思维”这个哲学问题。图灵坚持通过特定算法程序,把可计算的数量关系都转化为由一台图灵机来计算。冯·诺依曼指导发明第一台基于运算器与存储器的计算机,他为图灵通用机设计出一个物理模型——edvac,edvac可以执行加、减、乘、除等数学操作。与图灵一样,冯·诺依曼把人脑与机器类比,机器通过存储器储存数据,通过数学规则设计出把思维当成数据的程序,通过简单、和谐的数字制造出能进行复杂数字处理的机器。不管是图灵的通用机还是冯·诺依曼的edvac都是为了解决“莱布尼兹之梦”,其哲学思想均根源于毕达哥拉斯的“数论”哲学思想。除了图灵与莱布尼茨,纽维尔与西蒙等符号主义人工智能先驱也认为,不管是人类智能还是机器智能都是根据确定的或者规范的规则来进行符号操作的。不但如此,基于认知模拟的强人工智能也把心理状态作为计算状态,所谓认知就是计算,这是对基于数论的计算主义教条的信仰,人类智能类似于信息处理系统。联结主义人工智能不同于符号主义人工智能,它否认智能行为来自于在形式规则下对符号进行操作的观点,“符号主义人工智能中的信息处理包括明确的应用和形式规则,但是联结主义人工智能没有这样的规则”〔4〕1366-1367。与符号主义人工智能不同,联结主义人工智能的工作原理是寻找神经网络及其间的联结机制及学习算法。虽然联结主义与符号主义人工智能有区别,但联结主义人工智能与符号主义人工智能的共同假设都是把认知看作信息处理,且信息处理都具有可计算性。可见,毕达哥拉斯的“万物皆数,数之和谐”思想为符号主义人工智能与联结主义人工智能的发展奠定了基础。
除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。
集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。
罗素的逻辑原子论从本体论角度坚持奥卡姆剃刀的最小化原则,从语言角度上坚持思维经济原则,语言表述坚持最小词汇量原则。“如无必要,勿增实体”。罗素从逻辑学角度坚持逻辑前提或者公理最小化原则,“宁可构造,勿要推论”。根据公理与推理规则建构的逻辑学公理系统影响了图灵、冯·诺依曼及其以后的人工智能专家。冯·诺依曼致力于为新机器设计逻辑方案,戈德斯坦把冯·诺依曼看成将逻辑应用于计算机的第一人,“据我所知,冯·诺依曼是一个清楚地懂得计算机本质上执行的是逻辑功能的人”〔7〕69。冯·诺依曼在edvac的报告中也提到,不但从数学的观点,而且从工程史和逻辑学家的观点来探讨大规模计算的机器。在人工智能哲学先驱德雷福斯看来,自从古希腊人发明了逻辑与几何,就把一切推理归结为计算。人工智能中符号主义的基础是逻辑学,是哲学中的理性主义、还原论传统。他们把计算机看成操作思想符号的系统,试图用计算机来表达对世界的形式表述。心灵与计算机都是物理符号系统。在德雷福斯看来,“伽利略发现人们可以忽略的品质和技术上的考虑,从而能找到一种用来描写物质运动的纯形式化系统,同样我们可以设想,一位研究人类行为的伽利略可能会把所有语义上的考虑(对意义的依赖),变成为句法(形式化)操作技巧”〔8〕76。人工智能的代表人物数理逻辑学家皮茨与生理学家麦卡洛克撰写了《神经活动中内在观念的逻辑运算》,他们的思想受到罗素与怀特海《数学原理》的启发,坚持把一切数学还原为逻辑,甚至神经网络也可以用逻辑来表达。德雷福斯认为人工智能的发展建立在四种假设之上,即生物学假设、心理学假设、本体论假设以及认识论假设。其中认识论假设指的是一切知识都可被形式化,可以被编码成数字形式;本体论假设指的是存在一组在逻辑上相互独立的事实,知识可以被编入计算机程序。纽维尔认为:“人工智能科学家把计算机看成操作符号的机器,他们认为,重要的是每一样东西都可以经编码成为符号,数字也不例外。”〔9〕196在符号主义者看来,符号是人类认识外部世界的基本单元。人工智能的逻辑学派将人的认识对象通过数学逻辑的方式抽象为符号,利用计算机的程序符号来模拟人认知世界的过程。符号主义学派主要依靠计算机的逻辑符号来模拟人的认知过程。人工智能的重量级人物纽维尔与西蒙构造了第一个真正意义的人工智能程序,称之为“逻辑专家”,可见人工智能专家受逻辑学思想影响之深,“任何表现出一般智能的系统,都可以证明是一个物理符号系统”〔10〕41。西蒙与纽维尔认为,作为一般的智能行为,物理符号系统具有的计算手段既是必要的也是充分的。纽维尔与西蒙把其理论来源追溯到分析哲学家弗雷格、罗素与怀特海,“该假设的起源要追溯到弗雷格、怀特海与罗素就形式化逻辑提出的方案:以逻辑方式获取基本的概念式数学观念,把证明和演绎观念置于可靠的根基上”〔11〕。德雷福斯认为,真正的专家解决问题是诉诸直觉与整体性,在此基础上对人工智能的认识论假设与本体论假设进行批判,但他同意专家系统必须使用某种类型的概论度量的逻辑标准,“认知模拟的先驱者们——已经继承了霍布斯推理就是计算的主张,笛卡尔的心理表述、莱布尼兹的‘普遍文字’的思想——所有知识都可以在一组初始概念中得到表示”〔11〕。正如德雷福斯所言,“人工智能就是试图找到主体(人或计算机)中的哲学本原元素和逻辑关系”〔12〕。可见,人工智能与逻辑学特别是分析哲学紧密相关,逻辑学与分析哲学是人工智能的一个重要思想来源。
古希腊先哲用简单的物质元素探索世界的本原。例如,泰勒斯把世界的本原归结为水,赫拉克利特把世界的本原归结为火,德谟克利特把世界的本原归结为原子,认为世界由不可分的原子构成。他认为,万事万物都可以还原为不可分最小微粒——原子,世界是由原子构成的。复杂的事物由简单的事物构成,万事万物都由不可分的基本粒子构成。世界由最基本的粒子构成,复杂对象由基本粒子构成,基本粒子决定了宇宙的性质。
简单性哲学原则不但用简单元素追溯世界的本原,还致力于用力学解释自然现象。不管是物理规律、化学规律、生物规律,甚至是社会规律都可以用力学解释。哥白尼的日心说体系之所以取得科学界的支持也不是因为其解释力强,而是因为其遵循了简单性原则,从而取代了托勒密繁琐的本轮-均轮模型。牛顿的力学三定律就立足于简单性原则,用力来解释所有运动。按照简单性哲学原则,人与动物都是由简单的粒子构成,人与动物没有根本区别,人与机器也没有本质区别,甚至可以说“人就是机器”。1747年,拉·梅特里发表了《人是机器》这一哲学巨著,提出“人是动物,因而也是机器,不过是更复杂的机器罢了”〔14〕69。笛卡尔把人体看作是与机械相类似,用机械的旋涡来解释天体运动问题,他认为宇宙是一架机器,机械运动是唯一的运动规律。牛顿、开普勒、伽利略等都力图建立严密的力学体系来正确描述宏观物理运动,甚至是天体运动。爱因斯坦试图用公理化方法把自然界描绘成物质在时空中运动的统一体,德国物理学家海森堡也认为简单性原则可以作为科学假说可接受性的标准。
不仅自然界的规律可以用力学表示,而且社会关系也可以用力学表示。孔德提出社会动力学和社会静力学概念,社会动力学又称为社会物理学,立足于运用力学规律分析社会关系。1950年,斯宾塞出版《社会静力学》,把事物的基本规律看作“力的恒久性规律”(thelawofpersistenceofforce)。“人是机器”的观点启发人工智能先驱开始了构造具有人类智能机器的探索。
主体与客体的关系在哲学史上占居重要地位,是哲学研究中的核心問题,也是哲学史上诸多学派的思想源头。古希腊米利都学派的泰勒斯探索万物本源的时候就开始关注主体如何认识客体,关注主体与客体的关系,普罗泰戈拉提出的命题“人是万物的尺度”包括了主客二分思维的萌芽,笛卡尔的精神和物质相互独立的二元论思想暗含着主体和客体截然二分的思想。人们一般认为,只有人类才能成为主体,人之外的世界是客体。那主客二分的标准是什么呢?人之所以为主体的标准又是什么呢?有的学者认为只有主体才具有意向性,客体不具有意向性,客体只是主体认识的对象。主体一般具有独立意识或者个体经验。哲学意义的认识论指的是个体对知识和知识获得所持有的信念,主要包括知识结构、知识本质、知识来源和知识判断的信念等内容,主体与客体的关系问题是哲学的核心问题。认识论中的可知论与不可知论是研究主体之外的客体是否可知,唯心主义与唯物主义的区分以及各种不同的哲学流派的分野都基于主体与客体截然二分的哲学基础,哲学史上,各大流派都曾经把主客关系作为研究的切入点。
人工智能是赋予机器智能,让机器可以模拟或者代替人类的某种智能。人工智能基于不同的哲学理念有不同的研究进路,人工智能发展史上不同思想的对立也是基于对于主体与客体关系的哲学思考。一般来讲,人工智能可分为三种进路,即符号主义进路、联结主义进路以及行为主义进路。人工智能符号主义进路把人类的认知过程看成符号计算过程,人类认知是物理符号系统,人工智能先驱德雷福斯(s)认为,人工智能研究者其实与炼金术师一样,也是对一些符号进行不同的处理。因此,在人工智能的符号主义看来,人与机器没有本质区别,人类的心智同样可以还原成符号计算。德雷福斯在《计算机不能做什么:人工智能的极限》中提出,人工智能机器是基于生物学假设、心理学假设、认识论假设以及本体论假设基础之上的。“生物学假设:在某一运算水平上,大脑与计算机一样,以离散的运算方式加工信息;心理学假设:大脑被看作一种按照形式规则加工信息单位的装置;认识论假设:一切知识都可被形式化,可以被编码成数字形式;本体论假设:存在是一组在逻辑上相互独立的事实,知识可以被编入计算机程序”〔17〕156。从德雷福斯关于人工智能的四个假设中我们可以看出,人工智能与人类一样都是对信息加工和处理的工具,从这个意义上讲,主体与客体之间没有本质的区别。主体与客体不能截然二分,之所以对主体和客体进行区分,表明人类对于自身的认知规律和智能结构没有真正揭示。
人工智能的联结主义进路,又称为仿生学派或生理学派,认为人工智能源于仿生学,特别是对人脑模型的研究,其主要原理为神经网络及神经网络间的连接机制与学习算法。联结主义起初是用软件模拟神经网络,后来发展到用硬件模拟神经网络。其理论假设是人与机器如果具有同样的结构应该具有同样的功能,可以通过研究人脑的物理结构从而制造出类似人脑的机器。在联结主义看来,人与机器结构相同,人脑与计算机程序运行模式相同,则功能相同。纽维尔(allennewell)认为,智能的计算机程序可以被用来模拟人类的思维过程。联结主义失败的原因是人脑的结构并不像人工智能研究者们在电脑上模拟一样,人类的大脑是将物理事实与知觉过程所连接的客观事实,而不只是对信息进行加工的一台机器。人与机器不同,机器不具有人类的精神状态和意识。人类的精神状态和意识是否由人脑结构决定呢?人类精神状态和意识是先验存在还是后天习得仍然是认知科学研究的难题。因此,通过神经网络让机器模拟人类智能行不通。通过对人工智能的符号主义和联结主义的分析我们发现,主体与客体区别的必要性得以彰显,人的主体性地位不能动摇。
人工智能的行为主义进路,又称为人工智能的进化主义或控制论学派,其原理为维纳和麦克洛克等学者的控制论思想及感知-动作型控制系统。研究重点是模拟人在控制过程中的智能行为和作用,如对自适应、自组织和自学习等的研究。人工智能行为主义学派的代表布鲁克斯(rodneybrooks)研制的“六足机器人”实质上是一个基于感知-动作模式模拟昆虫行为的控制系统,能够适应外界的环境,但这样的机器人也不具有人类的感知与认知能力,主体与客体之间还是可以严格区分。人工智能的目标从技术层面来讲是制造出对人类有益的智能机器,从哲学层面来讲,就是利用人工智能概念和模型,通过机器模拟人类智能来推动哲学核心思想主客二分问题的研究,借此解决哲学上的身心问题、意识难题等问题。哲学的核心问题与人工智能的研究是相互促进的。
综上所述,人工智能技术的发展有其哲学根源,根源于数是万物本源思想、万物皆数思想以及数的简单、和谐思想,还根源于亚里士多德的逻辑思想以及分析哲学的逻辑分析研究方法。在众多哲学思想中,简单性原则是人工智能的哲学思想源泉。人工智能就是计算机用逻辑方法把思维还原为简单数字来模拟人脑的过程。人工智能发展是思维的革命,人工智能涉及信息与计算的本体地位和方法论问题,人工智能的发展迫使哲学家们对思维的存在形式进行深入研究,从而把形而上的论证变成可操作的过程。人工智能的目标是通过计算机实现机器模仿人类智能,人工智能的发展直接指向哲学的中心问题。例如,意向性问题、形式化问题、身心问题等。对于人工智能的哲学基础溯源有利于推动哲学的进步与发展,也可以拓展对于传统哲学问题的研究。只有对人工智能的哲学思想基础进行追溯与探源,才能为人工智能工作者提供思想源泉,从而更好地理解与把握人工智能的理论基础、发现人工智能的发展规律以及预测人工智能的发展趋势、把握人工智能的发展方向。
参考文献:
〔1〕玛格丽特·博登.人工智能哲学〔m〕.刘西瑞,王汉琦,译.上海:上海译文出版社,2001.
〔2〕汪子嵩,等.希腊哲学史〔m〕.北京:人民出版社,2004.
〔3〕亚里士多德.形而上学〔m〕.李真,译.上海:上海人民出版社,1995.〔4〕安东尼·梅耶斯.爱思唯尔科学哲学手册〔m〕.张培富,等译.北京:北京師范大学出版社,2015.
〔5〕〔m〕.northholland,amsterdam:macmillanmagazinesltd,1992.
〔6〕davis,soflogic:mathematiciansandtheoriginofthecomputer〔m〕.newyork:&,2001.
人工智能论文大学生篇九
人工智能和数字地球是计算机科学及信息科学发展中的重要领域。本文简述了人工智能的概念及其在计算机上的实现方式,并提出了人工智能技术在数字地球发展中几个方面的应用,最后总结了人工智能技术为数字地球的发展带来的好处。
1前言
,美国副总统阿尔.戈尔在加利福尼亚科学中心作的演讲中提出了“数字地球”这一新概念,并对其作了比较全面和通俗的说明[1]。演讲中戈尔总统给出数字地球可能的无比广阔的应用前景,人们可以通过数字地球技术指导仿真外交,打击和监测犯罪,保护生态多样性,预测气候变化,增加作物产量等。
在数字地球中非常重要的一点是如何使海量的地理空间数据变得有意义,即让它们能过被人们所理解。但是,在面对这些海量的数据时,我们处理的手段却是有限的。而且这些数据都是由计算机来处理的,在面对大量数据中的无用数据时,计算机是很难将其识别出来的。所以我们需要让计算机具有人类一样的智慧,将这些数据进行有效的处理。如今,人工智能技术在数字地球中有着广泛的应用。通过这一技术,人们可以高效的处理和分析这些海量数据。
2人工智能的实现方式
人工智能在计算机上有两种不同的实现方式。一种是采用传统的编码技术,使系统呈现智能的效果,而不考虑所用的方法是否与人或动物机体所用的方法相同。另一种是模拟法(modelingapproach),它要求实现方法也和人或动物机体所用的方法相同或相似。模拟法有两种实现的算法:遗传算法和神经网络算法。
遗传算法借鉴生物进化论,将要解决的问题模拟成一个生物体,通过复制、交叉、突变等操作产生下一代解空间[3],并通过适应函数度来淘汰那些不良的个体,这样迭代进化几代之后就很有可能得到适应度函数值较高的个体。遗传算法通常用在求解问题最优解的情况下,如函数优化、组合优化等。
神经网络算法通过模拟人或动物的神经网络传递和处理信息的行为特征,进行分布式并行信息处理的算法数学模型[4]。使用神经网络算法使系统具有像人一样学习的特征。初始时,系统模块跟初生婴儿一样什么也不懂,而且会经常犯错,但是它可用通过学习,从错误中吸取教训,下一次运行时就可能改正。
3人工智能技术在数字地球中的应用
人工智能能够使我们的计算机具有人能解决问题的能力,使得计算机工作起来更加的高效。而且通过人工智能的学习机制,降低其出错的几率。人工智能在数字地球中可以有以下几个方面的应用:
3.1智能导航
当前我们主要使用gps技术来做定位和导航的。但是gps只能在室外及卫星信号不被遮挡或反射的地方才能使用。因此,在室内、茂密的树木覆盖处和高层建筑地下gps就很难使用了[5]。
使用人工智能技术进行智能导航,当不能获得gps卫星信号时,系统会智能的使用基于通信基站定位、互联网定位等来提供导航。同时,人工智能系统还可以实现最优路径规划,周边信息搜索等功能。
3.2智能的人机交互
数字地球的建设依赖于互联网、虚拟现实等技术,但是现在我们能做的仅仅是通过这些技术将我们所获得的海量数据展现在人们面前。而显示信息的形式主要是以浏览器、虚拟头盔等,这些工具存在着不能与人友好交互的问题。我们通常是通过人肢体来交互,而不能像现实生活中人们通过对话的形式交互。
3.3专家系统
计算机较人强的地方在于它的计算速度快,将计算机的高运算速度和人的智慧集成起来构成专家系统。专家系统使用人类专家推理的模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论[6]。
在气象预测中,我们要处理大量的气象数据。使用传统的计算机处理方式,我们还要对计算机的处理结果做大量的分析。但是通过专家系统,不仅给出处理的数据结果,还可以给出分析的结果,以便研究人员辅助研究使用。这样可以减少大量的人力耗费。
总结
戈尔总统所提出的数字地球,不仅仅是数字化的地球,其未来的发展跟应该是在数字化的基础之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未来,电子设备将会更加智能化,人机交互将会更友好化。
同时在面对海量的地理空间数据时,使用人工智能技术可以拓宽我们队这些数据的处理能力。加快数据的处理速度、精确性等。通过智能搜索,可以快速精准的找到我们所需要的信息。就像google公司所做的智能周边搜索一样,当人们走在城市街道上的时候,系统可以搜索并显示周边我们感兴趣的一些商店、景观、饭店等信息。并且人工智能技术还能提供智能导航、人机自然语言交互、专家系统等。未来人工智能技术将在数字地球的发展中起到更大的作用。
人工智能论文大学生篇十
人工智能、基因工程、纳米科学被认定是21世纪的三大顶端高科技,其中人工智能在近些年来其研究领域不断扩大,涉及到哲学、神经生理学、心理学、计算机科学以及仿生学等多个科学领域的研究,其科技成果也层出不群,被广泛应用于科学研究以及工业生产中[1].工业生产过程中采用电气自动化生产模式,能够大大降低劳动成本,提高生产效率的同时还能保证产品质量,因此被众多企业用于生产实践中,而在电气自动化控制系统中应用人工智能技术,可谓是如虎添翼,保障了生产环节控制的高效性和科学性。
1人工智能在电气自动化控制中的应用优势
1.1受干扰程度低
以往工业生产中的电气自动化控制都是依靠既定的程序和管理器来实现的,管控系统根据各个生产环节仪器仪表中传递的数据进行分析,套入固定的问题处理软件上,选择指令发布,不具备具体问题具体分析的能力,会受到多个生产因素的干扰。人工智能技术其神奇之处就在于智能,不需要精确的动态模型和具体参数的设置,就能够有效处理生产信息,调控电气化生产设备。除此之外,人工智能技术能够实现调控的一致性,掌控全局进行智能调控,根据生产信息作出有效应答,而不会局限于某一固定生产指令,只调控某一环节的生产设备。
1.2操作误差小
人工智能本身的运行条件没有太多的限制,与因此与传统的控制器相比,本身的操作误差更小,基本上不会受到外界因素的干扰[2].一般来说,人工智能技术在电气自动化控制体系中应用,会现根据实际生产需求设置参数,随后又人工智能系统进行统一的调控,而在实际应用过程中,这些参数是基本上不会因为外界干扰而改变的,这也就保证了人工之能够系统的管控质量,不会因为本身的故障而引起决策的失误,大大降低了操作误差,使得各个生产环节能够按照预先设想的方案有序进行。操作误差小,是人工调控与传统控制都不具备的特点,完全符合机械化自动生产的理念。
1.3调节效率高
人工智能其数据处理分析能力更为强大,因此在实际应用过程中,即使生产环节发生了变化,需要调整人工智能控制系统的一些参数,其难度也是相对更低的,不需要专门的技术专家来进行指导,只要调整部分参数,人工智能体系就能捕捉到生产环节的变化,执行调整管控模式。例如,在生产环节中,产品种类发生了变化,如果是传统的电气自动化控制体系,就可能要重新输入控制参数,调整控制程序,而人工智能系统能够根据收集到的生产信息,进行合理的自我调整,操作简便快捷[3].
1.4降低生产成本
在电气自动化控制系统中还没有应用人工智能技术之前,生产虽然已经不要使用人力,但是在其他环节比如设备故障检查以及设备整理仍然需要人工来完成,这样不仅耗费时间,而且产生了一定的人工费用,一直是限制电气自动化生产的一个问题。人工智能能够实现器械故障的自动检测,实现工业生产的全方位管理,确保所有的电气设备都按照设定好的方案进行工作,消除了生产过程中一些常见的生产问题。
2人工智能在电气自动化控制中的实际应用
人工智能技术的实际应用主要有专家系统、人工神经网络、启发式搜索以及模糊集理论,这些运作体系是其应用于生产实践的基础。一直以来,人工智能技术的目标就是为了让机器能够拥有与人相同的智力,具备接受信息处理事情的能力[4].计算机技术的发展,使得工业生产实现了初步实现了电气自动化生产的目标,但是要想这一管控体系进一步发展,还需要更为先进的机器调控技术,人工智能正好符合这一发展要求,为电气自动化生产的进一步发展提供了无限的可能。
2.1电气产品的优化设计
一直以来,电气产品的优化设计是一项巨大的工程,受限你要掌握市场行情,融合更为先进的科学技术,根据以往的产品设计经验,进一步优化产品的性能,才能确保产品的销售额度,保证企业的市场占有率。这一研发环节,不能过长,因为如今的市场雪球变化极快,而且市场竞争较大,必须抢占先机,但是又不能以为追求研发速度而忽视质量。随着人工智能技术的应用,目前产品的优化设计模式已经有纯人工操作转变为人工智能辅助设计,大大缩短了产品的研发周期,并且在人工智能的帮助下,产品参数的设置更为合理,数据精确度大大提升。
2.2电气设备的故障诊断
在工业生产过程中,往往是多个生产环节数千台机器一同运转,单靠人工或者是笨拙的控制器,是无法找出具体故障设备的,需要花费大量的时间,而为了保证生产安全,就必须停下可疑范围内的所有电器设备,对于电器自动化生产来说,时间就是金钱,这样会严重耽误产品的生产,给公司造成巨大的经济损失[5].人工智能技术在电气自动化控制体系中的应用,很好地解决了这一难题,通过专家系统和模糊理论的结合,分析各个生产环节中仪器仪表的数据信息,系统能有效掌握全部的生产信息,实现电气自动化生产的智能控制,及时发现设备故障问题,停止故障设备,将生产损失降低到最小,切实保障企业的生产效益。
2.3运行过程的智能控制
社会在不断发展,数年前机械化生产代替了人工生产,而随着社会需求的不断扩大,企业生产效率也必须不断提高,才能在激烈的市场竞争中站稳脚跟。人工智能技术的发展,为实现电气自动化的智能控制带来了希望的曙光。在大数据时代背景下,工业生产中设计到的生产信息量是极为庞大的,人工无法快速处理这些信息作出有效决策,智能依靠计算机技术的使用,而计算机信息技术都是依靠固定的程序来处理信息,只有将二者结合,才能实现电气自动化生产的有效管控。人工智能系统是初步具备了人类智力的机械系统,具有计算速度快的优点,能够在短时间内处理大量信息,得出正确的结果,及时作出生产决策。
3结语
机械技术与计算机信息技术的结合,实现了工业生产的电气自动化控制,大部分的生产过程都是有机械完成的,然而在生产实践中,还是需要人工进行调控,及时调整机器的运行状态,定期检修器械,以免发生故障影响生产效率[6].人工智能技术的出现,实现了电气自动化的智能控制,与传统人工控制相比,其调控效率更高,能够直接处理各个生产环节中出现的一些问题,而且基本上不会受到外界因素的干扰,决策科学,管理高效,绝对是一项值得信赖的尖端技术。人工智能的应用,能够保证生产质量的统一性,优化产品设计,在生产过程中,及时发现电气设备运行故障的问题并进行有效处理,实现了电气化生产的实时动态管控。
参考文献:
[5]陈坤,史策,季永春.人工智能技术在电气自动化控制中的应用思考[j].艺术科技,20xx(08):76.
[6]姜关胜.人工智能技术在电气自动化控制中的应用问题探讨[j].电子技术与软件工程,20xx(20):150.
人工智能论文大学生篇十一
你听说过或者看到过智能垃圾桶吗?如果你们没看到,那就请跟我一起坐时光穿梭机到未来世界去参观吧!
未来的大街上,干净无比,没有落叶、没有垃圾、没有到处飞舞的苍蝇、蚊虫、更没有刺鼻的汽油味......
哟!多可爱的米奇老鼠啊!我们一起跑上前,正想抚摸它,嘿!原来是一个垃圾桶。这可不是一般的垃圾桶哟!你们瞧:米奇两眼还发着光呢,原来它正在发电来处理自已肚里的东西。米奇嘴巴紧闭着,头上有二根天线,这天线可不是好玩的,它左边一根天线是吸收路旁汽车的尾气的,右边一根天线是吸收太阳能的,以用来发电处理垃圾的;米奇胖乎乎的身体上还有三颗颜色不同的大纽扣。一个小朋友好奇的触摸了一下第一颗红色的扣子,垃圾桶的门自动翻开了,又按了一下第二颗绿色扣子,门又自动的关上了,那第三颗是干什么的呢?小朋友忍不住又按了一下第三颗的扣子,哈!真神奇,扣子眼里弹出一个微型。这时,一位阿姨走过来,见我们围着米奇,知道我们想知道这只神奇的米奇的功能,于是,便给我们介绍起来:这只米奇的脑袋里装有电脑芯片,它只要看到有人不小心掉了垃圾,它就会走过去,用手将垃圾捡起来,张开紧闭的嘴,把它扔进去。如果看到有人不爱清洁,它的另一只手那么会出示”保护环境荣耀,破坏环境羞耻”的小牌。它还有许多的内在功能:它会垃圾分类,把有毒和无毒的分装在肚子的两边,它肚子里还有一种溶化器,它把无毒的垃圾处理成肥料,把有毒的垃圾通过自身的.排毒器将它转换成一种无毒的清新气体,释放出来。它还有一种非常有趣的趣事,一但它肚子的垃圾装满了,它就会自动处理垃圾,并会走到一棵树下,从紧闭的嘴里弹出一根管了,然后插入土里,把垃圾养份注入树里,然后又回到它原来的位置。
到了秋天,秋风扫落叶时,米奇头上便会张开一个巨大的吸盘,把黄叶都吸进去,然后又做成肥料。米奇的脚下还有一种粘了水的毛刷式吸尘器,它可以一边唱”小曲”,一边走一边清洁道路。如果我们现实中有这种垃圾桶,那该多方便啊!我想,这个愿望不会是梦,我们的愿望一定会实现。
人工智能论文大学生篇十二
人工智能(artificialintelligence,ai)一直都处于计算机技术的最前沿,经历了几起几落……----长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学(cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,着名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
----在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
计算机与人工智能
----“智能”源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。
----人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
----当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。
----我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
----答:ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
----智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显着成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
----数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
----主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
----答:我国开始“863计划“时,正值全世界的人工智能热潮。”863-306“主题的名称是”智能计算机系统“,其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和”瓶颈”,用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
----但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
----今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
----问:请您预测一下人工智能将来会向哪些方面发展?
----答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
----目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
----人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的`生活、工作和教育等带来更大的影响。
什么是人工智能?
----人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
ai理论的实用性
----在一年一度at&t实验室举行的机器人足球赛中,每支球队的“球员”都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。
----这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。
----我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
未来的ai产品
----安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--“蓝色牛仔”(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的“蓝色牛仔”的智力水平将大致与人脑相当。
----麻省理工学院的ai实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
----/报道,比利时的starlab正在制造一个人工猫脑,这个猫脑将有7500万个人造神经细胞。据称,移植了人工猫脑的小猫能够行走,还能玩球。预计它将于制作完程。
人工智能论文大学生篇十三
简要地介绍了人工智能科技技术的基本概念。对专家系统、人工神经网络、模糊理论、遗传算法等人工智能技术的含义进行了介绍,并对这些技术在电力系统中的应用和存在问题进行了分析。
人工智能技术(ai artificial intelligence)是一项将人类知识转化为机器智能的技术。它研究的是怎样用机器模仿人脑从事推理、规划、设计、思考和学习等思维活动,解决需要由专家才能处理好的复杂问题。在应用方面,以专家系统、人工神经网络、遗传算法等最为普遍 。
1.1 专家系统(es)
专家系统是利用知识和推理来解决专家不能解决的问题。传统程序需要固定程序和复杂算法,输入数据并得出结果。专家系统集中大量的符号处理,采用启发式方法模拟专家的推理过程,通过推理,利用知识解决问题。它具有逻辑思维和符号处理能力,能修改原来知识,适合于电力系统问题的分析。
1.2 人工神经网络(ann)
人工神经网络是大量处理单元广泛互联而成的网络,是一种模拟动物神经系统的技术。神经网络具有自适应和自学习的能力,能并行处理分布信息。电力系统应用人工神经网络可以进行实时控制、状态评估等。
1.3 遗传算法(ga)
遗传算法是一种进化论的数学模型,借鉴自然遗传机制的随机搜索算法。它的主要特征是群体搜索和群体中个体之间的信息交换。该方法适用于处理传统搜索方法难以解决的非线性问题。
1.4 模糊逻辑(fl)
当输入是离散的变量,难以建立数学模型。而模糊逻辑则成功地应用在潮流计算、系统规划、故障诊断等电力系统问题。
1.5 混合技术
以上各种智能控制方法各有局限性,有些甚至难以处理电力系统实际问题。因此需要结合各个算法的优势,采用人工智能混合技术。其中包括:模糊专家系统、神经网络模糊系统、神经网络专家系统等技术。
2.1在电能质量研究中的应用
人工智能技术可以对电压波动、电压不平衡、电网谐波等电能质量参数进行在线监测和分析。在检测和识别电能质量扰动时能克服传统方法的缺陷。专家系统随着经验的积累、扰动类型变化而不断扩充和修改,便于用户的.掌握[3] 。
此外,专家系统和模糊逻辑可用于培训变电站工作人员。智能软件可以模拟故障情形,有利于提高运行人员的操作技能。
2.2 变压器状态监测与故障诊断专家系统
变压器事故原因判断起来十分复杂。判断过程中,必须通过内外部的检测等各种方法综合分析作出判断。变压器监测和诊断专家系统首先对油中气体进行分析。异常时,根据异常程度结合试验进行分析,决定变压器的停运检查。若经分析发现变压器已严重故障,需立即退出运行,则要结合电气试验手段对变压器的故障性质及部位做出确诊。
变压器监测和诊断专家系统通过诊断模块和推理机制,能诊断出变压器的故障并提出相应对策,提高了变压器内部故障的诊断水平,实现了电力变压器状态检修和在线监测。
2.3 人工智能技术在低压电器中的应用
低压电器的设计以实验为基础,需要分析静态模型和动态过程。人工智能技术能进行分段过程的动态设计,对变化规律进行曲线拟合并进行人工神经网络训练,建立变化规律预测模型,降低了开发成本。
低压电器需要通过试验进行性能认证。而低压电器的寿命很难进行评价。模糊识别方法,从考虑产品性能的角度出发,将动态测得的反映性能的特性指标作为模糊识别的变量特征值,能够建立评估电器性能的模糊识别模型。
2.4 人工智能在电力系统无功优化中的应用
无功优化是保证电力系统安全,提高运行经济性的手段之一。通过无功优化,可以使各个性能指标达到最优。但是无功优化是一个复杂的非线性问题 。
人工智能算法能应用于电力系统无功优化。如改进的模拟退火算法,在求解开云KY官方登录入口 压配电网的无功优化问题中,采用了记忆指导搜索方法来加快搜索速度。模式法进行局部寻优以增加获得全局最优解的可能性,能够以较大概率获得全局最优解,提高了收敛稳定性。禁忌搜索方法寻优速度较快,在跳出局部最优解方面有较大优势。遗传算法在解决多变量、非线性、离散性的问题时有极大的优势。要求较少的求解信息的,模型简单,适用范围广。
2.5 人工智能在电力系统继电保护中应用
自适应型继电保护装置能地适应各种变化,改善保护的性能,使之适应各种运行方式和故障类型。它能够有效地处理各种故障信息,获得可靠的保护。
借助于人工智能技术不但能够提取故障信息,还能利用其自学习和自适应能力,根据不同运行工况,自适应地调整保护定值和动作特性。
2.6 人工智能在抑制电力系统低频振荡的应用
大规模电网互联易产生低频振荡,严重威胁着电力系统的安全。人工智能为电力系统低频振荡的控制提供了技术支持。神经网络、模糊理论、ga等人工智能技术应用于facts控制器和自适应pss的研究,为抑制电力系统低频振荡提供了新的手段。
作为一门交叉学科,人工智能将随着其他理论的发展而进入新的发展阶段。应用新方法解决问题,或促进各种方法的融合,保持简单的数学模型和全局寻优情况下,寻求到更少的运算量,提高算法效率,将是未来发展的趋势。
随着电力系统的发展,电力系统的复杂性不断增加,不确定因素越来越多。随着人工智能技术的不断发展和提高,利用人工智能技术来解决电力系统的问题将会受到越来越多的重视。
随着我国电力系统的持续稳步发展,电力系统数据量不断增加,管理上复杂程度大幅度增长,市场竞争的加大,为人工智能技术在电力系统的应用提供了广阔前景。
但人工智能技术的基本理论还不成熟,只是停留在仿真和实验阶段。人工智能的开发是一个长期的过程,需要不断改进和完善,并在实际应用中接受检验。
人工智能论文大学生篇十四
在二十一世纪的将来,宁波市室验小学的中心,有一座巨大的建筑物――大本钟。
这不是大本钟的仿照,而是一座高科技的智能教学楼。这座楼分成一个个小小的圆,那是一个个教室。现在,可以让你见识见识所谓的“高科技”啦。走上楼梯,来到四(五)班的教室门口,门口摆着好多双鞋,不用惊奇,教室是圆的,固然得穿特别的鞋啦。在门框上,有一个指甲大小的洞,那是微形录像头,假如你晚到了便会自动发信息给教师,以防你不诚恳,偷偷溜进来。教室的中心有一大个一大个的沙包,那是学生座椅,你任凭怎么坐都可以,由于它有一个芯片,可以测你的心理,只要在听课就可以。假如没听课,它就会像一把扎满钉子的“活火山”,把你弄得苦痛不堪。教室里没有桌子,一人一个平板电脑,教师讲课的板书占一半,不用怕看不见,在为可以放大。另一半是录像机,把教师讲的课全程录像。
教室前面的讲台更牛,还有那个“大本钟”语。数教师(包括全部教师)要拖课,那把教室建成大本钟干吗?钟一响,学生倒安平稳稳的,教师在讲台上却被震得象在12级地震现场,五脏六腑都“蹦”了出来。假如学生很喜爱,只要在“课后评分”地方点一个好,教师就会留下来。“墙”上的黑板也有芯片,教师不用找文件,心里一想,文件就会立即翻开。芯片还能识别人。同学假如在动,不到5秒,电脑就会自动关机,以防坏掉。黑板角落一个个白色的,上面画有图案的是教室按扭,一按,相应的教室布置,让同学们和教师不会为没有教室而苦恼。
教室后边的图书角也很奇妙。想到什么书,什么书就会被推出一个角,不用我们一本本地找了。图书角的边上有一个生物角,透亮的玻璃里一个“动物园”一样的地方。每天都会引来很多奇怪的眼睛,里面除了凶狠的野兽,其它动物几乎都不缺。进入边上的“更衣室”,一套适合你的衣服就穿在了你身上,再走进“迷你动物园”,边上不是透亮的了,而是一望无际的“动物天堂”。尽管知道这是幻觉,但学是很吸引人。走近那些动物,衣服起了作用,让人听懂了它们的语言,还能和它们沟通呢!
不止这些呢,节日里,“天花板”上的灯会身出五彩的`光线,平常只会在摔倒时变软的“地板”现在一不当心踩着了哪块,“砰”地一下就会炸出五色的彩带,立即又自动恢复,为节日增加不少乐趣。
噢,差点遗忘了,教室是园的,真正的目的就是不让教师体罚学生。由于那把“沙包椅”已经起到这个作用了啦!
这样一个智能教室,肯定会在21世纪被创造出来让我们用的。我们肯定要去研发出这种高科技的智能教室。
人工智能论文大学生篇十五
在航空业的发展中,人工智能技术起着积极的促进作用。本文介绍了空中交通管理中的人工智能理论及方法运用,为优化空中交通流量管理系统提供理论依据,更好地服务于空管系统。
人工智能;空中交通;管理
人工智能,即artificialintelligence,是计算机科学的一个分支,研究对人的意识及思维的信息过程的模拟并对其进行延伸和扩展,通过了解人类智能,研究出类似的反应的智能机器。随着计算机技术的发展,人工智能越来越多的运用于民航的各个方面,如飞行间隔的控制,空中流量的预测,飞行冲突的调配。但随着民航业的飞速发展,飞行流量日益增大,需要将人工智能技术有效运用于空中交通流量管理中,建立人工智能辅助系统,扩大空域容量,优化空中交通流量,提升空管秩序。
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指单位时间和空间通过的航空器数量。通过优化空中交通流量,将空中交通管制服务与机场、航路有效结合,减少延误,提高机场和空域的.利用率。从时间角度上,空中交通流量管理可以分为航路流量管理和机场终端区流量管理两部分,从时间上又可划分为战略流量管理,预战术流量管理和战术流量管理。当航空器数量饱和时就要对航空器进行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本着地面让空中的原则,对地面航空器的起飞时间进行限制;2)空中等待,航空器在航路上或终端区规定的等待点或没有冲突的临时等待点进行盘旋等待;3)更改航路等待,当航路航线的容量饱和时,航空器可以通过选择其他航路航线;4)控制航路间隔,通过对航空器进入空域的间隔进行限制,来达到流量管理的目的,吸收部分拥挤的流量。
agent在人工智能的研究中,指能自主活动的软件或者硬件实体,目前国内普遍翻译为智能体。在人工智能中,设计关键智能体,对于研究人工智能的应用是非常重要的。在空中交通流量管理中,设计如下关键智能体:航班智能体、航路智能体和机场终端区智能体。航班智能体的属性有高度、速度、上升/下降率、起飞机场、目的地等。航班智能体可以与区域内或终端区的其他航班智能体建立通信,通过获取航班信息和逻辑判断,结合周围环境与自身状况,指导控制自身行为。如果航班智能体需要做出相应的调整如改变高度航向等,需要给上级的航路智能体或机场终端区智能体发出申请,上级智能体批准后,航班智能体才能采取相应的调整,作出相应的控制行为,才能通过交互环境反馈相应结果。在实际工作中,这个过程是通过空中交通管制员指挥航空器实现的。空中交通管制员在实际指挥工作中,需要结合当时的空中交通状况和自身的经验知识。航路智能体的主要属性有航路的高度、宽度、容量等。航路智能体需要对航班智能体进行指挥,管理航路上的智能体,同时与其他航路智能体和机场终端区智能体进行通信,对航班智能体进入和离开航路的时机进行协调,记录流量信息并报告给上级流量管理部门,接收上级智能体的指令。在航班智能体进入航路之前首先要进行容量评估。通过评估后的航班智能体回收到航路智能体发出的放行许可才能进入航路。如果没有通过容量评估,则要向上级智能体发送将流量限制的申请,发布流量限制后航路就不能批准航班智能体的进入,通过减少航班智能体的数量,控制航路交通流量。机场终端区智能体:在实际工作中,机场终端区的航班管理包括管制指挥、流量控制、地面场面监视、进离场等,难度较大。终端区智能体(通常运行中为塔台管制)首先要处理所收到的信息,如天气雷达信息、地面运行信息和情报信息等等,结合已有知识开展机场的容量评估。如遇到低云低能见度、雷雨等天气时可以调低终端区/机场容量,对进入离开的航空器进行限制。通过容量评估,塔台会给航班智能体一个slottime,航班智能体按照塔台的slottime起飞或降落,从而达到流量控制。如果没有通过容量评估,则需要通过上级的智能体批准,发布流量控制,限制终端区的流量,通过控制进入或离开的航空器数量达到流量限制的目的。机场终端区智能体(塔台)对终端区的航空器进行管理,还需要与航路智能体和平级的终端去智能体进行通信,对航班进出的slottime进行协调,并将流量管理信息报告给上级流量管理部门,接收上级智能体的命令。如果出现拥堵机场终端区智能体需要通过一些措施来管理流量,如分配slottime、指挥航空器地面或空中盘旋等待。
综上所述,以往在模拟空中交通流量进行研究的时候,首先制定流量控制信息,再在系统模拟航班飞行计划。这样的模拟过程不能解决容量告警问题。如果流量控制不合理,只能重新设定流控信息,再次进行模拟,因而加大模拟过程的工作量。而通过智能体的运用,可以在模拟中不断调整智能体来模拟空中流量,增加了模拟流量过程中的灵活性,将人工智能运用于模拟中,借助智能体来模拟空中流量,可以更好的分析空中交通流量问题。
[2]甘鑫鑫基于多agent的空中交通协同流量管理研究[j].科学与财富,2015(30):278.
[5]陈言俊,刘甜甜.人工智能与机器人.[6]黄昱斌.基于multi-agent的空中交通流量的探究[j].科技创新与应用,2015(14):57-57.
人工智能论文大学生篇十六
摘要:电气工程及其自动化的实现,从根本上促进我国电气产业迅速发展,满足人们的日常生活需求。但在实际的自动化发展过程中,还存在一些不足之处影响电气工程的生产效率,难以满足当前时代的需求,基于此,作者结合自身经验,对电气工程及其自动化发展的现状,及其中存在的问题及解决措施进行有效的分析,以供相关人员参考,为其提供借鉴。
关键词:电气工程;自动化;问题
引言
随着时代不断发展,信息技术、电气工程自动化技术逐渐被广泛应用。受生产力水平提升的影响,人们对于电气工程及其自动化的要求也不断提升,以满足时代发展,但实际上,现阶段电气工程及其自动化中存在诸多问题,其技术水平与社会生产力发展需求未能有效的相适应,难以满足当前社会的需求。
1我国电气工程及其自动化现状分析
电气工程及其自动化属于新型的技术,具有较强的综合性,直接影响我国工业的生产水平,并与人们的日常生活息息相关。现阶段,我国电气工程技术不断创新发展,从根本上带动电气工程及其自动化领域发展,并促使其逐渐向高新技术转化,扩大技术的应用范围,从整体上促进国民经济提升。实际上,电气工程及其自动化属于现代电气信息领域,其涵盖内容非常广泛,包括与电气工程相关的所有工程,并在多个领域中进行应用,例如,工业领域、军事领域、农业领域等,对我国的工业与社会发展起到积极的促进作用,同时,电气工程及其自动化技术的创新与发展对于人们的日常生活方式与生产方式也产生影响,以推动国民经济稳定发展[1]。
2我国电气工程及其自动化中存在的问题
2.1电气工程能源损耗问题
在电气工程及其自动化的实际应用过程中,受自身的工作性质与设备影响,存在能源损耗问题,直接造成能源浪费,加剧现阶段我国能源紧缺的压力,与当前的节能减排理念相悖,不符合可持续发展战略的实施,同时提升了工业生产的成本支出,降低了经济效益。
2.2电气系统的集成化不高
现阶段,受时代发展与实际需求的影响,促使电气工程自动化系统逐渐向集成化方向发展,以满足当前时代的要求,但由于我国电气集成化起步较晚,当前的集成化水平较低,处于独立自动化阶段,影响信息与资源的共享。
2.3电气工程自动化系统难以统一
为了满足当前的发展需求,电气工程要利用先进的技术,构建完善合理的自动化系统,以此提升工作效率,但受多种因素影响,系统难以进行合理的统一,缺乏兼容性,降低了系统的工作效率。
2.4电气工程质量达不到要求
电气工程的质量直接影响其使用寿命,但受实际的工程质量管理工作影响,以及工作人员自身的管理水平偏低、管理意识落后等因素的影响,导致电气工程质量经常达不到实际的要求,质量管理效率不高。
3现阶段我国电气工程及其自动化中存在问题的解决措施
3.1合理对电气工程进行节能设计
在当前的时代背景下,工作人员应重视电气工程的能源损耗问题,利用先进的技术手段,降低能源消耗,以满足当前可持续发展战略,缓解我国能源与资源紧缺问题。例如,利用合理的技术手段,优化电气工程的节能设计,从根本上降低能源的不必要浪费,降低成本的支出。在实际的节能设计优化过程中,工作人员应结合实际情况,以工作最基本要求为基础,对非重点环节进行有效的改良,如,对现阶段的变压器进行改良,选择绕组阻值较小的供电系统变压器,以此来降低变压器的能源损耗,从而减少不必要的损失浪费,达到节能的目的,促使我国电气工程实现可持续发展。
3.2从整体上提升电气工程自动化系统的集成化水平
提升工作人员自身的专业水平与能力,利用工作人员的专业技术,建立完善的系统平台,并充分发挥其创新意识与主观意识,从根本上满足实际的集成化需求,具体来说,主要从以下两方面入手:一方面,完善电气工程系统的兼容性,保证系统软硬件在交换过程中具有统一的接口,从而实现信息数据的共享;另一方面,提升各功能与系统之间的链接效率,从整体上降低电气工程自动化系统的运行成本,从而促使减少设计成本的支出,以满足当前时代的需求。
3.3构建科学合理、统一的电气自动化系统
构建科学合理、统一的电气自动化系统是电气工程未来发展的主要方向与趋势,以此来提升电气工程的整体质量。具体来说,主要包含以下几方面:首先,积极引进先进的技术,以先进的电气自动化技术为基础,构建完善的系统,从而提升整体的管理水平;其次,引进先进的设计理念,完善现阶段电气自动化系统,改善其中的不合理之处,并针对现阶段的企业不同需求进行个性化开发;最后,实现信息资源的有效共享,促进我国电气工程领域稳定发展,跟上时代发展的步伐[2]。
3.4重视对电气工程的质量管理
重视对电气工程的质量管理,可以从根本上提升电气工程质量与使用寿命,并保证工程使用安全。具体来说,可以从以下几方面入手:首先,加强工作管理人员对电气工程质量管理的重视力度,认识到管理的重要性,以此来保证工程质量;其次,加强现阶段工作人员自身的专业水平与能力,通过定期的培训,强化工作人员的专业水平与技术理念,利用其良好的综合素养,提升质量管理效率;然后,加强对电气工程施工材料的管理,保证材料的质量,从而提升电气工程的质量;最后,重视对各个施工环节的质量管理,通过合理的监督与管理,保证施工的规范性,并以其整体质量为基础,适当对施工进度进行合理的调整,以此来保证施工的整体进度。
4结论
综上所述,电气工程及其自动化中存在的问题,直接影响电气工程的整体质量与效率,因此,工作人员应积极引进先进的技术与设备,通过不断的革新与发展,合理的进行资源节约,降低成本的支出,以此来获取可观的经济效益。同时,加强对电气工程的研究力度,不断提升其技术水平,从而推动我国电气工程及其自动化领域稳定发展。
参考文献:
[1]宋海南.电气工程及其自动化中存在的问题及解决措施[j].南方农机,20xx,47(11):134+148.
[2]闫海东,程世伟.浅析电气工程及其自动化中存在的问题及解决措施[j].科技创新与应用,20xx(06):69.
【本文地址:http://www.pourbars.com/zuowen/4925899.html】