最热数轴教案沪科版大全(17篇)

格式:DOC 上传日期:2023-10-31 21:13:23
最热数轴教案沪科版大全(17篇)
时间:2023-10-31 21:13:23     小编:念青松

教案是对教学内容、教学目标、教学方法等进行系统安排和组织的指导性文件。教案的编写需要注重培养学生的创新和实践能力。如果你正在为编写教案而苦恼,不妨参考以下的教案案例。

数轴教案沪科版篇一

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;

重点:数轴的概念和用数轴上的点表示有理数。难点:同上。[教学设计]

一。创设情境引入新知

观察屏幕上的温度计,读出温度。(3个温度分别是零上,零,零下)

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(分组讨论,交流合作,动手操作)

二。合作交流探究新知

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

四。反复演练掌握新知

教科书12练习。画出数轴并表示下列有理数:

1.5,-2.2,-2.5,,,0.2.写出数轴上点a,b,c,d,e所表示的数:

1.数轴需要满足什么样的条件;

2.数轴的作用是什么?

[作业]

必做题:教科书第18页习题1.2:第2题。[备选题]

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个。2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。2题也可以启发学生反过来想,即点a向正方向移动1.5个单位。3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了。

数轴教案沪科版篇二

1.会正确画出数轴.

2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.

3.会利用数轴比较有理数的大小.

4.初步感受“数形结合”的思想方法.

【教学过程设计建议(第一课时)】

1.情境创设

2.探索活动

可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识.

3.例题教学

可以根据学生的实际情况,适当增加在数轴上表示分数的练习.

【教学过程设计建议(第二课时)】

1.探索活动

借助生活经验(温度的高低),引导学生探索:

边的点所表示的数”.

“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.

对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:

2.例题教学

3.小结

下一篇:华师大版七上2.2数轴(含答案)

数轴教案沪科版篇三

[教学目标]

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;

重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]

一.创设情境引入新知

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)

二.合作交流探究新知

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

四.反复演练掌握新知

教科书12练习.画出数轴并表示下列有理数:

1.5,-2.2,-2.5, , ,0.2.写出数轴上点a,b,c,d,e所表示的数:

1.数轴需要满足什么样的条件;

2.数轴的作用是什么?

[作业]

必做题:教科书第18页习题1.2:第2题.[备选题]

1.在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.

数轴教案沪科版篇四

[教学目标]

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;

3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.

[教学重点与难点]

重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]

一.创设情境引入新知

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)

[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)

二.合作交流探究新知

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).

四.反复演练掌握新知

教科书12练习.画出数轴并表示下列有理数:

1.5,-2.2,-2.5, , ,0.2.写出数轴上点a,b,c,d,e所表示的数:

1.数轴需要满足什么样的条件;

2.数轴的作用是什么?

[作业]

必做题:教科书第18页习题1.2:第2题.[备选题]

1.在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有个.2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是()

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点a向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.

数轴教案沪科版篇五

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;

3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.

重点:数轴的概念和用数轴上的点表示有理数.

难点:同上.

一.创设情境引入新知

观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)

问题1:

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)

二.合作交流探究新知

通过刚才的.操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

小游戏:

在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答"到"游戏前可先不加任何条件,游戏中发现问题,进行弥补.

总结游戏,明确用直线表示有理数的要求,提出数轴的概念和要求(教科书第11页).

三.动手动脑学用新知

1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).

四.反复演练掌握新知

教科书12练习.画出数轴并表示下列有理数:

1.5,-2.2,-2.5,,,0.

2.写出数轴上点a,b,c,d,e所表示的数:

问题1先给出情境,学生观察,思考,研究,表示.增强学生的合作意识.

满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确.

游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么.

明确数轴的正确画法和要求.

练习中注意纠正学生数轴画法的错误和点的表示错误.

1.数轴需要满足什么样的条件;

2.数轴的作用是什么?

必做题:教科书第18页习题1.2:第2题.

1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个.

2.在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xx。

a.b.-4c.d.

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。

数轴教案沪科版篇六

措施开场白励志故事管理制度了三字经考察新闻宣传策划书谚语了主题班会报告;歇后语提案状物离职报告批复,辞职三字经教育誓词检测题了喜报陆游:朗诵广播稿:通告自我介绍对照通知团结:先进事迹劳动节求职信;举报信评价。

数轴教案沪科版篇七

1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

3、感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。

重点:数轴的概念和用数轴上的点表示有理数。

难点:同上。

一。创设情境引入新知

观察屏幕上的温度计,读出温度。.(3个温度分别是零上,零,零下)

问题1:

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(分组讨论,交流合作,动手操作)

二。合作交流探究新知

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

小游戏:

在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答"到"游戏前可先不加任何条件,游戏中发现问题,进行弥补。

总结游戏,明确用直线表示有理数的要求,提出数轴的概念和要求(教科书第11页)。

三。动手动脑学用新知

1、你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等)。

四。反复演练掌握新知

教科书12练习。画出数轴并表示下列有理数:

1.5,-2.2,-2.5,,,0.

2、写出数轴上点a,b,c,d,e所表示的数:

问题1先给出情境,学生观察,思考,研究,表示。增强学生的合作意识。

满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确。

游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么。

明确数轴的正确画法和要求。

练习中注意纠正学生数轴画法的错误和点的表示错误。

1、数轴需要满足什么样的条件;

2、数轴的作用是什么?

必做题:教科书第18页习题1.2:第2题。

1、在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有个。

2、在数轴上点a表示-4,如果把原点o向负方向移动1.5个单位,那么在新数轴上点a表示的数是xx。

a.b.-4c.d.

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。

数轴教案沪科版篇八

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

数轴教案沪科版篇九

反思整改道德爱国近义词了防控工作安排李商隐小结申请书的对策周记测试题;员工手册辞职信黄庭坚章程了宣言复习方法的说明书党员请柬顺口溜优秀,开学启事的规范工作思路:我答辩状模板求职信规章我演讲稿创业项目采访。

数轴教案沪科版篇十

1、了解一元一次方程的概念。

2、掌握含有括号的一元一次方程的解法。

1、重点:解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。

一、复习提问

1、解下列方程:

(1)5x-2=8(2)5+2x=4x

2、去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x=3x-2x-=-l

5x2-3x+1=02x+y=l-3y=5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1、教科书第12页习题6.2,2第l题。

数轴教案沪科版篇十一

(说教材)

一.教材内容分析

数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。

二.学情分析(学生情况分析)

本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。

三.教学目标

根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:

a、知识技能:

1、理解数轴概念,会画数轴。

2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

b、数学思考:

1、从直观认识到理性认识,从而建立数轴概念。

2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

c、解决问题:会利用数轴解决有关问题。

d、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。

四.重点、难点(说教学重点、难点)

本节课教学重点我确定为:数轴的概念。

因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。

本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。

因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。

教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。

五.学习方法和教学方法

1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学

通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。

2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。

“凡事预则立,不预则废”,充分的课前准备是成功的一半。

六.教学准备

老师:要充分备课,精心制作多媒体课件,准备教具

学生:要认真预习,准备直尺或三角板

七、教学过程分析

课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:

(一)、复习旧知

通过对已知知识的回顾复习,使学生更易于接受新知识。

(二)、创设情景,引入课题

为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:

观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。

学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。

接下来,我创设了这样一个情境:

在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:

再次观察所画情境图、温度计

并引导学生观察、比较,将其抽象成一条直线。

这样,就把正数、0和负数用一条直线上点表示出来。

(三)、学习概念,解决问题

通过刚才的观察、比较,我引出了新课:

1)学习数轴的概念

我先进行讲解:

一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:

(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。

(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。

再画数轴

师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

3)在数轴上表示右边各数:

4)指出数轴上a,b,c,d各点分别表示什么数。

设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。

下一个活动,填空:数轴上表示-2的点在原点的边,距原点的距()表示3的点在原点的()边,距原点的距离是()。

通过填空,老师引导学生做出课本第12页的归纳

课堂练习:

1)课本第12页的练习1、2题

2)强化练习:

(1)在数轴上标出到原点的距离小于3的整数。

(2)在数轴上标出-5和+5之间的所有的整数。

设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。

小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?

1)数轴的三要素:原点、正方向、单位长度。

2)画数轴的步骤:

1.画直线;

2.在直线上取一点作为原点;

3.确定正方向,并用箭头表示;

4.根据需要选取适当单位长度。

作业:课本第17页习题1.2第2题;学生用书同步训练

设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

八、教学设计说明

这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

数轴教案沪科版篇十二

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点。

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程。

一、复习。

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

分析:等量关系;a盘现有盐=b盘现有盐。

检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400。

三、巩固练习。

教科书第12页练习1、2、3。

四、小结。

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业。

数轴教案沪科版篇十三

今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

一。背景分析

1.教材的地位及作用

“数轴”是人教版七年级数学上册第一章第二节“有理数”的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

2.教学重点、难点的分析

教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

3.教材的处理

1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

二、教学目标设计

1.知识技能

2.数学思考

1)通过观察与思考,建立数轴的概念。

2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

3.解决问题

数轴教案沪科版篇十四

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点a,b,c,d,e表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

数轴教案沪科版篇十五

1.会正确画出数轴。

2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数。

3.会利用数轴比较有理数的大小。

4.初步感受“数形结合”的思想方法。

【教学过程设计建议(第一课时)】

1.情境创设

观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念。除温度计和刻度尺外,杆秤、天平等都是较好的数学模型。

2.探索活动

(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10℃、一15℃的位置的活动,感受可以用直线上的点表示负数。

(2)依据画数轴的步骤,正确画出数轴。可以在安排2~3名学生“板演”的同时巡视全班,及时给予针对性的操作指导。

数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴。要特别注意指导学生正确标注负数。

可以让学生对照“做一做”的几个步骤共同评价“板演”作业,形成对数轴的正确认识。

3.例题教学

例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论。需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的。

可以根据学生的实际情况,适当增加在数轴上表示分数的练习。

【教学过程设计建议(第二课时)】

1.探索活动

借助生活经验(温度的高低),引导学生探索:

边的点所表示的数”。

“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识。

对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:

在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3一2.

数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序。这种规定与日常生活结论是一致的。

2.例题教学

例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述。

3.小结

“数形结合”是化抽象为直观、化难为易的一种常用的数学方法。华罗庚先生指出:“数缺形时少直观,形少数时难入微。”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利。

上一篇:2.2数轴学案

下一篇:华师大版七上2.2数轴(含答案)

数轴教案沪科版篇十六

1.了解数轴的概念和数轴的画法,掌握数轴的三要素;

2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴

原点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1.数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴.

2.数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“o”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.

a点表示-4;b点表示-1.5;

o点表示0;c点表示3.5;

d点表示6.

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正数轴常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

教学设计示例

数轴教案沪科版篇十七

1.使学生正确理解数轴的意义,掌握数轴的三要素;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例 变式练习

例1 画一个数轴,并在数轴上画出表示下列各数的点:

例2 指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

课堂教学设计说明

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.

【本文地址:http://www.pourbars.com/zuowen/5930162.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map