优质长方体与正方体的体积教案范文(19篇)

格式:DOC 上传日期:2023-11-02 21:27:16
优质长方体与正方体的体积教案范文(19篇)
时间:2023-11-02 21:27:16     小编:笔砚

通过编写教案,教师可以更好地掌握教学步骤和教学重点。教案的编写要充分利用教学资源,创造良好的教学环境和氛围。以下是一些经典教案的分享,希望能给大家提供一些灵感和启示。

长方体与正方体的体积教案篇一

长方体和正方体的体积计算

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

长方体、正方体体积公式的推导。

一、创设情境

填空:

1、叫做物体的体积。

2、常用的体积单位有:、、。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的'体积=长×宽×高。

用字母表示:v=a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习——正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:v=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂

五、课后实践

做练习七的第5、7题。

长方体与正方体的体积教案篇二

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点。

教学用具。

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程设计。

(一)复习准备。

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)学习新课。

长方体与正方体的体积教案篇三

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

长方体、正方体体积公式的推导。

教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。

学生准备:1立方厘米的正方体12个

一、创设情境

填空:

1、叫做物体的体积。

2、常用的体积单位有:。

3、计量一个物体的体积,要看这个物体含有多少个。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习:长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)

431

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)

通过上面的实验,你发现了什么?(可让学生分小组讨论)

结论:长方体的'体积=长×宽×高。

用字母表示:v=a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习:正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:v=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结

五、课后实践

做练习七的第5、7题。

长方体与正方体的体积教案篇四

1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

2、能根据有关体积、容积的计算方法,解答实际问题。

能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

458立方厘米=()立方分米。

20.6立方分米=()立方米。

7060毫升=()升=()立方分米。

130毫升=()立方厘米=()立方分米。

800升=()立方分米=()立方米。

0.02立方米=()立方分米=()升。

2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)。

(1)学生独立完成。

(2)说说解题思路。

第一题:18×5=90(立方分米)90(立方分米)=90升。

90×0.74=66.6(千克)。

第二题:13×2.7×1.2=42.12(立方米)。

42.12×1.3≈55(吨)。

第三题:60×60×80=288000(立方厘米)。

2分米=20厘米。

20×20×20=8000(立方厘米)288000÷8000=36(个)。

第四题:9.6×4.2=40.32(平方米)。

9.6×4.2×2.5=100.8(立方米)。

第五题:80×40×(60-10)=160000(立方厘米)。

160000(立方厘米)=160升。

160000÷(40×40)=100(厘米)。

(3)重点分析第5题。

水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

1、学生独立研究。

2、小组讨论。

3、教师评议。

长方体与正方体的体积教案篇五

1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

3、运用体积计算公式解决一些简单的实际问题。

4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

2、教学重点/难点。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:理解长方体体积公式的意义。

3、教学用具。

教学课件、一个长方体拼制模型。

4、标签。

一、启发谈话,激趣引入。

二、学习“体积”、“体积单位”的概念。

2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?

演示书上的实验,得出:土豆占的空间小,石块占的空间大。

4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。

5、学生汇报:

(1)常用的体积单位。

(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。

(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。

6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。

得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。

2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。

3、小组合作:学生四人一小组操作并做好实验记录。

思考:

(1)每排摆几个?每层摆了几排?摆了几层?

(2)一共摆了多少个小正方体?

(3)这个图形的体积是多少?

4、汇报实验结果。

每排个数。

每层排数。

层数。

小正方体个数。

让学生观察表格中填写的各数,你发现了什么?

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

6、学生汇报,交流,板书。

读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。

生:正方体是长、宽、高都相等的特殊的长方体。

师:根据这种关系,你能推导出正方体的体积公式吗?

2、师生共同归纳:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a×a×a=a3。

师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。

3、应用公式:

例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。

回顾一下,今天的学习大家有什么收获?

板书。

物体所占空间的大小,叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

v=abh。

正方体的体积=棱长×棱长×棱长。

v=a×a×a=a3。

长方体与正方体的体积教案篇六

1.教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。

2.教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。

3.教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的计算方法,学生有一定的'难度。因此,我把“体积公式的推导过程”定为本节课的难点。

这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。

(一)设疑导入,揭示课题,明确任务

理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。

(二)操作感知,探究规律,巩固深化

小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:

第一步,做-----操作感知

先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:

实验1:每排摆4个方木块,摆3排,方木块的总数是()个。

实验2:摆这样的2层,公用方木块()个。

实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块()个。

小组汇报实验结果,并填入表中:

长方体与正方体的体积教案篇七

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

使学生理解长方体的.体积公式的推导过程,掌握长方体体积的计算方法。

理解长方体的体积公式的推导过程。

小正方体若干个 教法学法 合作法、讨论法

教学环节 第一次备课 动态修改

这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)

1、学生猜想

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

大胆猜测长方体的体积怎样计算

学生猜想:长方体的体积=长宽高

2、动手实践操作

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)

(1)提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习

(3)小组派代表汇报

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

长方体与正方体的体积教案篇八

教学内容:

教学目标:

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

教学重点:

正方体和长方体体积的计算方法。

教学难点:

理解长方体的体积计算公式。

教具:

长、正方体模型、课件、长、正方体形状的纸盒等

教学过程:

创设情境,导入新课

出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?

教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。

揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)

操作探究,发现规律

学生按照要求用正方体搭出四个不同的长方体并编号。

让学生观察,并作小组交流。

这些长方体的长宽高各是多少?

用了几个小正方体?不数,你怎样计算小正方体的个数?

长方体的体积是多少?和计算小正方体的个数的'方法比一比。

根据所搭的长方体填表:(表格略)

根据表格,引导分析,发现规律。

比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?

引导学生猜想:长方体的体积和他的长宽高有什么关系?

再次探索,验证猜想

出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。

如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。

引导概括,得出公式

交流的出结论:

长方体的体积=长×宽×高

v=abh

启发引导。

正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?

让学生尝试,再交流得出结论:

正方体的体积=棱长×棱长×棱长

学生阅读教材第26页,说说正方体体积的字母公式。

应用拓展,巩固练习

做“试一试”

先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。

做“练一练”第1题。

观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。

做“练一练”第2题。

先让学生选择几个式子说说其表示的意思,再口算。

课堂作业:做练习四第2题。

课后作业:

完成练习四第1、3题。

长方体与正方体的体积教案篇九

(1)长方体的认识

教学目的

1.使学生认识长方体的特征,初步掌握长方体的概念,建立和发展初步的空间观念。

2.培养学生动手操作和观察的能力。

3.通过学生的实践活动,培养学生学习数学的兴趣。

教学过程

一、复习

教师:我们已经学习了一些平面图形,都有哪些图形呢?

二、新授

1.导入

教师出示教具,导入新课。

2.学习长方体的特征。

(1)学生拿出自己准备的长方体。

(2)研究长方体的特征。

(3)认识长方体的立体图形。

3.教学例2

三、巩固练习

1.下列图中哪些是长方体,哪些不是长方体,是长方体的指出它的长、宽、高。

2.判断题

(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。()

(2)长方体有可能相邻的两个面的面积相等。()

(3)长方体的每一个面一定是长方形。()

3.说出下面长方体的长、宽、高各是多少厘米?

四、家庭作业:第23页第1、2、3题。

(2)正方体的认识

教学目的

1.使学生掌握正方体的特征,了解长方体和正方体之间的联系和区别。

2.培养学生观察、比较、抽象概括的能力。

3.渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学过程

一、复习

1.长方体有()个面,()条棱,()个顶点。长方体的6个面一般都是()形,也有可能有两个相对的`面是()形,()面积相等;()长度相等。

2.有一个长方体,长5分米,宽3分米,高2分米,它所有棱的棱长之和是()。

二、新授

教学正方体的特征

1.展示动画图像:

(1)将长方体的较长边缩短,使长、宽、高都相等。

(2)将长方体的较短边延长,使长、宽、高都相等。

2.观察学具正方体。

3.继续展示动画图像,进一步明确:

(1)正方体的六个面是完全相同的正方形;

(2)正方体的12条棱长度相等;

(3)有8个顶点。

4.对比长方体和正方体,说出它们的相同点与不同点。

5.填表。

三、巩固练习

1.判断题。

(1)正方体的六个面面积一定相等。()

(2)相交于一点的三条棱相等的长方体一定是正方体。()

(3)长方体是特殊的正方体。()

2.一个正方体每条棱长3分米,它的棱长之和是多少分米?

3.用一条长48厘米的铁丝折成一个正方体的框架,这个正方体的棱长是多少厘米?

四、家庭作业:第23页4――10题。

长方体与正方体的体积教案篇十

1.在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。

2.通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。

3.进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。

教师准备用1cm小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm的正方体和实验记录单。

一、创设情境,导入新课。

明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)。

揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)。

二、操作探究,发现规律。

启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

学生回忆后,电脑演示推导长方形面积公式的过程。

学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。

谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

明确活动要求:

(1)同桌合作,用若干个1cm的正方体任意摆出4个不同的长方体并编上序号。

(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

(3)填完表格后,同桌核对数据,并交流自己的发现。

学生按要求操作、交流,教师巡视。

组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)。

启发:同学们通过用1cm的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

三、再次探索,验证规律。

学生可能想到用4个1cm的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm;也可能用“4×1×1”算出它的体积。

根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm。(见图1)。

出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm的小正方体,你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先在长方体上画一画,再和同学交流。

提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)。

明确:在这个长方体中,沿着长一排可以摆4个1cm的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先试一试。

反馈:这个长方体的体积是多少cm?你是怎样想的?(学生的回答后,出示图3)。

引导学生用示意图表示出思考过程。

四、引导概括,得出公式。

揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

板书:v=abh。

和同桌说一说你还知道了什么?

让学生口算各题的得数,并交流计算时的思考过程。

五、巩固练习,应用拓展。

1.完成“试一试”。

指导测量、记录数据后独立解答。

出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm?

学生独立完成后,组织反馈。

2.完成第26页“练一练”第1题。

先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm的小正方体摆成的。

3.完成练习六第2题。

出示题目,让学生自由读题。

提问:计算冷藏车的容积,为什么要从里面量?

学生独立完成计算,并组织反馈。

六、全课小结,梳理学法。

七、课堂作业。

练习六第1题。

长方体与正方体的体积教案篇十一

1.填空。

(1)()叫做物体的体积。

(2)用字母表示长方体的体积公式是()。

(3)棱长2分米的.正方体,一个面的面积是(),表面积是(),体积是()。

(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是(),体积是()。

(5)5立方米=()立方分米。

2.8立方分米=()立方厘米。

720立方分米=()立方米。

32立方厘米=()立方分米。

2.7立方米=()升。

1200毫升=()立方厘米。

4.25立方米=()立方分米=()升。

1.2立方米=()升=()毫升。

2.一块砖长24厘米,宽1.2分米,厚6厘米,它的体积是多少立方分米?

长方体与正方体的体积教案篇十二

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。

重点

理解底面积。

仪器

教具

投影仪

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

(1)长、正方体的体积大小是由确定的。

(2)长方体的`体积=。

(3)正方体的体积=。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh

1.做第20页的“练一练”。学生独立做后,学生讲评。

首先帮助学生理解:什么是横截面?再让学生做后学生讲评。

3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。

学生今天学习的内容

做练习三的第11、12、13题。

长方体和正方体统一的体积公式

长方体的体积=底面积×高

正方体的体积=底面积×棱长

长(正)方体的体积=底面积×高,

用字母表示:v=sh

长方体与正方体的体积教案篇十三

课题二:

教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学过程 。

一、创设情境。

填空:1、       叫做物体的体积。2、常用的体积单位有:    、    、    。3、计量一个物体的体积,要看这个物体含有多少个          。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。

二、实践探索。

1.小组学习------长方体体积的计算。

出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?

实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。

观察结果:(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米)。

4  3  1。

含体积单位数:4×3×1=12(个)。

体积:4×3×1=12(立方厘米)。

(3)它含有多少个1立方厘米?

(4)它的体积是多少?

同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

(3)它含有多少个1立方厘米?

(4)它的体积是多少?(同上板书)。

通过上面的实验,你发现了什么?(可让学生分小组讨论)。

用字母表示:v=a×b×h=abh。

应用:出示例1,让学生独立解答。

用字母表示为:v=a3。

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践。

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第33页的“做一做”的第2题。

3、做练习七的第4、6题。

四、课堂小结。

五、课后实践。

做练习七的第5、7题。

长方体与正方体的体积教案篇十四

教材分析:

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

教学目标:

1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

学情分析。

学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

教学手段:学生动手操作,同时配合多媒体课件演示.

这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。

(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

(二)操作想象,探索公式。

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

具体的过程是:。

(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

(6)利用关系,类推公式。

通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

(三)巩固练习,扩展应用。

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

3.完成练习七第1题,让学生运用公式计算。

4.完成练习七的第7题,要注意这道题算式的运算顺序。

5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。

学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。

(四)总结全课,质疑解惑。

(1)让学生说说这节课学习了什么?还有什么疑问。

这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

长方体与正方体的体积教案篇十五

学习内容:

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

教学难点:

教具运用:

正方体木块若干。

教学过程:

一、复习导入。

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。

(3)质疑:求长方体的体积公式需要知道什么条件?

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a•a•a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。v=abh=7×4×3=84(cm3)。

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业。

完成课本第31页“做一做”第1、2题。

四、课堂小结。

1.这节课,你有什么收获?

五、课后作业。

完成练习册中本课时练习。

板书设计:

v=abh。

v=a•a•a=a3。

长方体与正方体的体积教案篇十六

《长方体和正方体的体积》是义务教育课程标准实验教科书五年级下册的教学内容,此时,学生对长方体和正方体的特征已经很熟悉了,而且在前两节课的学习中,学生还知道了什么是体积,以及常用的体积单位。在此基础上,我们再来对长方体和正方体的体积计算方法进行顺势教学。

1、在操作中,让学生感知出长方体的体积大小与它的长、宽、高等有关。

2、能运用长方体、正方体的体积公式,计算长方体、正方体的体积。并能运用所学知识解决一些实际问题。

3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。

其中,发现、归纳长方体和正方体的体积公式是本节课的重点,难点是带领学生经历公式的推导过程,实现他们对知识的发现和再创造。

为了突出教学重点,突破教学难点,力求体现本课的设计理念,在教学中我主要采用了以下教学方法:

1、设疑激情

“学起于思,思源于疑”。心理学认为,疑最容易引起探究反射,思维也就应运而生。在导入时,我选用了两个生活中常见的盒子,学生们通过猜测,引发矛盾。疑问萌发起学生的求知欲望,同学们跃跃欲试,开始了对新知识的探究。

2、引导探索:在教学中,我把学生分成四人学习小组,并为每个小组提供了学习材料,让学生们通过自己“拼、摆,观察、计算、讨论、交流”等活动形式,自己去发现,归纳出长方体的体积计算方法。

3、观察演示:利用多媒体教学和操作活动帮助学生理解,突出重点,突破难点。

“教法为学法导航,学法是教法的缩影”。鉴于这样的认识,本节课在学习过程中,主要指导学生掌握以下的学习方法:

1、观察的方法。

2、活动实践的方法。

3、独立思考的方法。

4、小组交流的方法。

依据这节课的教材知识结构及小学生认知规律和发展水平,为优化教学过程,实现“愉悦和谐发展,主动探究新知,大胆发现创造”的课堂教学要求,这节课的教学过程是这样安排的:

学生们通过观察大胆的猜测,有的认为电话盒大,有的认为咖啡盒大,有的认为一样大。究竟哪一个大呢?我们需要掌握一种科学的方法来进行计算,这样才能验证我们的猜测。今天我们就一起来探究“长方体和正方体的体积计算方法”。

【】:著名教育学家苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。”因此,教师要在学生的认识过程中不断激发学生心灵深处那种强烈的探索欲望。在讲长方体、正方形面积计算这节课时,就先出示两个图形让学生想办法比较两个图形面积的大小。进而引发矛盾冲突,激起学生探索新知的渴望。我这样导课既活跃了课堂气氛,也抓住了学生的心,让学生情不自禁的想去探究和发现。

二、动手操作,感知认识

1、摆一摆:请同学们拿出20个1立方厘米的小正方体,小组合作摆一些任意长方体,并说说它的长、宽、高是多少?体积是多大?记录在记录单上。看看哪个小组摆得又多又快。

2、汇报交流。谁来汇报一下你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?还有不同的摆法吗?(学生边说,老师边记录)

3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?

4、总结,长方体的体积计算公式。

总结出字母公式。

】:充分信任学生、尊重学生,把学习的主动权交给学生,教师的指导作用是潜在而深远的,学生的主体作用是外显而巨大的。为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,给学生留下了足够的思维空间。在这种设计理念的引导下,我也让学生们自己去拼摆、去观察、去记录、去发现。自己归纳总结出长方体的体积计算方法。这样虽然会走一些弯路,但学生亲自经历和体验了学习过程,他们用自己理解的方式实现了数学的“再创造”。

三、尝试练习,再次发现

1.同学们真聪明,通过自己动手操作,发现了长方体体积的计算方法,要求一个长方体的体积,必须知道那些条件?出示例一,学生独立完成,集体订正。

2、看来同学们很聪明,那这个图形怎么求呢?(在例一的基础上变化数据,把它变成一个正方体)

3、小结:当长宽高相等的时候它就变成了一个正方体,正方体的体积就是棱长×棱长×棱长。如果用a来表示正方体的棱长,那它的体积公式用字母怎样表示呢?学生自己总结出正方体体积的字母表示公式,老师以小资料的形式介绍a3的读法和意义。

4、完成书上例2

5、小结:这节课我们学到了什么?

【】:正方体是特殊的长方体,它的体积计算方法与长方体的体积计算方法有着密切的联系,所以正方体体积计算方法的得来可以通过学生迁移学习获得。这样学习把学习的主动权交给了学生,还让学生体会到了数学知识之间的联系,深入体会了长方体和正方体的核心概念。

四、解决疑难,运用拓展

1、这节课我们学会了求长方体和正方体的体积的计算方法。那么这两个盒子要求它的体积,需要知道什么?师提供测量数据,让学生求体积。并且比较大小。

3、出示拓展题二。一块不规则的橡皮,怎样求它的体积?

【】:教师要精心地、创造性地设计课堂练习,应以练习设计的艺术魅力感染学生。使学生在课堂练习这个广阔的天地中,既长知识,又长智慧,促进学生的全面发展。“设计游泳池”和“求不规则橡皮的体积”这两个拓展练习设计。不是在单纯地模仿例题,机械地套用公式计算。而是在对题目的观察、分析中渗透了辩证唯物主义的“变中有不变,不变中有变”观点,培养了学生要“透过表面现象,看到问题实质”的辩证思维。在对题目的解答过程中培养了学生用“逆向思维”的思考方法解决问题的能力。同时,还体现了数学和生活的紧密联系。游泳池的深度要科学,符合生活实际,长和宽要成比例。这样不仅使学生加深了对长方体和正方体体积计算方法的理解,还培养了学生思考问题的深刻性和全面性,实现了对数学知识的再创造。

长方体与正方体的体积教案篇十七

课改就是改课,是关乎学生成长、关乎家庭幸福、关乎国家和民族前途与命运的大事,这样说似乎并不为过。课改既然这么重要,那就应该脚踏实地,求真务实。

合适的才是最好的,自己创出的方法用起来才会得心应手。

为此,一年来,笔者根据自己多年从事小学高段数学课改的体会,对小学数学的课改进行了一些思考与尝试,摸索出一个适合小学高段数学教学和本人特点的教学模式来,并取名;三试;教学模式。

问题是数学的心脏,提出一个问题往往比解决一个问题更重要。

教师呈现第一幅积木图,引导学生获取数学信息,提出自己感兴趣的数学问题,并尝试解决。

生:这是一个长方体,每排有4个方块,每层有3排,一共有2层。我想知道一共用了多少个方块。

师:那就请大家先想一想到底该怎么算?

学生搭积木,独立思考,手脑并用,显得既积极又热情。教师巡视学情,从中发现问题与多样化解法。

学生在组内相互交流时,学困生可以请教他人,初步求得解决问题的方法。

富兰克林说:;读书使人充实,思考使人深邃,交流使人清醒。;。

这时,教师请学生认真看书学习。在研读课文的过程中,不同的学生有了不同的发现与收获,准备用自己的语言表达出来。

教师组织全班交流,同时鼓励多样化解法,培养学生的求异思维能力。

生1:我认为可以横着把这个大长方体切成3片,每片有4;2=8(个)方块,3片就有8;3=24(个)方块,列式为4;2;3=24(个)。

生2:我的方法是把大长方体竖着切成4片,每片有3;2=6(个)方块,4片就有6;4=24(个)方块,列式为3;2;4=24(个)。

生3:我把大长方体平切成2层,每层有4;3=12(个)方块,2层就有12;2=24(个)方块,列式为4;3;2=24(个)。

教师引导学生对每种解法做出肯定性评价,并且引生得出:长方体体积=长;宽;高。

教师呈现第二幅积木图,引生发现这是一个正方体,长宽高都有4个方块,不论怎么切都是4;4;4=64(个)方块。由此得出:正方体体积=棱长;棱长;棱长。

教师呈现第三幅积木图,引生进行比较与计算,由此发现:长(正)方体体积=底面积;高。

学以致用,人尽皆知。数学的价值就在于运用。

现在可以请学生独立运用这节课学到的`知识解决课后练一练中的全部问题。

引导学生参与全班交流,充分讲解自己的思考方法,探索多样化的解题方法,加深对知识的理解,培养思维的灵活性和深刻性,提高了解决问题的能力,实现了数学的价值。

口比手快脑更快。;三试;教学模式省去了满屋子的小黑板,减少了无效的重复展示,首脑并用,求真务实。原本要用两课时才能完成的长(正)方体体积的教学内容,这次只用了一课时就全部完成,可谓高效低耗了,而且先学后教,当堂训练,不加预习,不留作业,人人能讲,铭刻在心。

长方体与正方体的体积教案篇十八

教材分析:

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

教学目标:

1、结合具体***作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

学情分析

学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

教学手段:学生动手***作,同时配合多媒体课件演示.

这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。

(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

(二)***作想象,探索公式。

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验***作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

具体的过程是:

(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

(6)利用关系,类推公式

通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验***作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

(三)巩固练习,扩展应用

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作***作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

3.完成练习七第1题,让学生运用公式计算。

4.完成练习七的第7题,要注意这道题算式的运算顺序。

5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。

学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手***作和解决实际问题的能力。

让学生说说这节课学习了什么?还有什么疑问。这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

长方体与正方体的体积教案篇十九

1.长方体有条棱,相对的棱的长度(),有()个面,()的面的`面积相等。

2.用一根长132厘米的铁丝,围成一个正方体的模型,棱长应是()。

3.把3个棱长1厘米的小正方体拼成长方体,这个长方体的棱长和是()厘米,体积是()立方厘米。

4.把一个正方体切成两个完全一样的长方体,表面积增加了20平方厘米。这个正方体的表面积是()平方厘米。

5.单位换算。

5400立方厘米=()立方分米。

530平方分米=()平方米。

9600立方厘米=()毫升=()升。

5立方米=()立方分米。

2.8立方分米=()立方厘米。

0.8升=()毫升。

1.7立方米=()立方分米v。

4平方米=()平方分米。

2.5立方米=()立方分米。

6.7升=()升()毫升。

8500立方厘米=()毫升=()升。

470立方厘米=()立方分米。

4800平方厘米=()平方分米。

270毫升=()升=()立方分米。

4.5立方分米=()升=()毫升。

【本文地址:http://www.pourbars.com/zuowen/6907340.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档
Baidu
map