作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
乘法分配律的教案设计篇1
教学内容:
教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。
教学目的:
使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:
乘法分配律
教具、学具准备:
教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)4 54十34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)4=54十34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)6 186十76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15十9) 20__十209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用 表示三个数,乘法分配律可以写成下面的形式:
(a+b) c=ac+bc
等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)
等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据乘法分配律,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?
2.做第64页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?
根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?
第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
四、作业
练习十四的第1、2题。
乘法分配律的教案设计篇2
【教学目标】
1.理解并掌握乘法分配律的内容和字母表达式,运用乘法分配律进行计算,知道它的一些应用。
2.经历从现实背景中抽象出乘法分配律的过程,通过计算、观察、举例、验证、概括、说理等活动,积累数学探究活动经验。
3.体会乘法分配律的现实背景,了解乘法分配律的作用、意义及价值,初步感受转化、归纳等数学思想。
【教学重点】
理解、掌握并运用乘法分配律。
【教学难点】
从现实背景中抽象概括出乘法分配律。
【教学过程】
一、课前谈话,导入新课。
不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说?(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说?是不是挺有趣的?其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究?
通过前几节课的探索,我们已经发现了乘法交换律和乘法结合律,这一节课,咱们再继续探索,看看又会发现什么新的规律。(板书:探索与发现(三))
二、探索交流,发现规律。
1、初步感知。
(1)(出示长方形草坪图)课件演示。
师:我们宝鸡的人民公园最近正在改建,大家看,这是一块草坪,工人叔叔准备在草坪的四周围上栅栏。看图,你发现了哪些数学信息??
(2)师:求栅栏长多少米?就是求长方形的什么呢?请同学们算一算。(生计算,师巡视)
(3)师:谁来说说自己的算法?(根据学生回答板书算式A)
师:像这样算的同学请举手。谁来说说,先算的什么?再算的什么?
(4)师:有没有不一样的想法?(根据学生回答板书算式B)
师:这样算的同学请举手。这种算法先算的什么,再算的什么呢?
A: B:
(61+39)×2 61×2+39×2
=100×2 =122+78
=200(米) =200(块)
(5)师:这两个算式,解决了同一问题。计算的结果也相等。那么,这两个算式之间可以用什么符号连接?(根据学生回答板书“=”)
(6)师:这两个算式真有趣,明明是不同的算式,却能得到相等的结果。它们之间一定有什么内在的联系与区别。观察,看看你能发现什么?同桌之间说一说。(生讨论,师巡视)
(7)师:说说你们的想法。
(8)师根据学生发言引导学生发现:
相同点:都使用了乘法和加法 ;
参与运算的数是相同的;
意义相同(都算了长方形的2条长与2条宽之和。)
不同点:运算顺序不同
左边先算和,再算积;右边先算积,再算和
2、再次感知。
你们帮老师解决了一个实际问题,老师奖励给大家一些笑脸,(出示笑脸图,每行有五个黄色笑脸图,三个红色笑脸图,共四行。)
(图略)
知道这上面一共有多少个笑脸吗?你能用几种方法解答?
学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:
(5+3)×4=5×4+3×4
3、概括定律。
我们现在已经得到了两个等式:
(61+39)×2=61×2+39×2
(5+3)×4=5×4+3×4
从上面的算式中你有没有发现什么规律?
师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?
师:从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?
生在练习本上举例验证。
师:从同学们举的大量的例子中,可以确定你们的发现是正确的。 还有不同意见吗?
师:你们发现的这个知识规律,叫做乘法分配律。什么叫乘法分配律?请同桌再交流一下。
学生积极地与同桌交流着,又踊跃地参加集体交流。
生1:把括号里的两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。
生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。
师:你们想表达的是这样的意思吗?(教师出示幻灯:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)
师:这叫做乘法分配律。能用字母来表示乘法分配律吗?
结合学生回答,教师板书:
(a+b)×c=a×c+b×c
师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。这就是数学的美。
三、应用规律,解决问题。
1、师:看来你们已经发现了规律,下面根据你们发现的规律,来做一个“找朋友”的游戏。
小黑板出示:(25+36)×4 ,谁是它的好朋友?
6×(20+30)
(a+50)×6
45×8+55×8
7×16+7×184
2、根据运算定律,在□中填上合适的数。
①(12+50)×3= □×3+□×3
②15×(40 + 23) = 15×□+15×□
③78×20+22×20=(□+□)×20
④▲×+●×=(□+□)×□
⑤66×28 + 66×32 + 66×40=(□+□+□)×66
3、选择。请用手势表示正确答案的编号。
与 25×(4×8)相等的算式是( )。
①25×4+25×8; ②25×4×25×8; ③25×4×8
全班学生中有一位选①,三位选②,其余都选③。通过辨析,学生更加清楚乘法分配律的内涵及与乘法结合律的区别。
(学生独立在作业纸上完成后,集体订正,电脑逐个显示订正后的答案。
4、选择其中一组题目来计算
甲组乙组
①100×13+2×13 ① 102 ×13
②(63+37)×39 ②63×39+37×39
③ 9×(46+54) ③ 9×46+ 9× 54
师:先观察,确定一下你做哪一组。(先选好要做的内容,并说明理由。最后总结出:利用乘法分配律可以使一些计算简便。然后学生独立做题,完成后交流答案。)
5、实际应用。
足球比赛的时候,学校为同学们准备了饮料。准备了24箱苹果汁和26箱橘子汁,每箱都是24瓶,你知道一共有多少瓶饮料吗?(学生独立解答,再集体交流。)
师:每箱饮料36元,付1500元够吗?(学生完成后,交流)
四、全课总结,布置作业。
1、通过这节课的学习,你有什么收获和感受?
2、你觉得自己的表现哪里最好?
3、老师小结:今天同学们通过自己的探索,发现了乘法分配律,真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
4、作业(略)
乘法分配律的教案设计篇3
一、教学目标:
(一)知识目标。
1、过探索活动,进一步体会探索的过程和探索方法。
2、通过探索活动,发现乘法分配律,并用字母进行表示。
(二)能力目标。
1、学习过程中,培养学生的探索意识和探索精神。
2、探索、交流过程中,培养学生发现问题、提出问题的能力。
3、培养学生观察、比较、抽象、概括能力。
(三)德育目标。
体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。
二、教学重点:
理解乘法分配律。
三、教学难点:
乘法分配律的应用。
四、教学方法:
1、猜测法。
2、验证法。
五、教具准备:
课件。
六、教学过程:
(一)导课。
应用乘法结合律进行简算。
2745= 8(725) = 3425=
(二)学习新课。
1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?
2、学生汇报:有的说100块,有的说90块。
3、详细汇报
生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)
生2 :我也发现有90块,因为有10行瓷砖,每行9块。
生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。
4、请大家观察这些例子的左右两边,有什么特点?
生1:从左到右是相同因数乘不同因数的和。
生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。
5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C
表示三个数,你能写出乘法结合律吗?
6、(A+B)C=AC+BC叫乘法的分配律。
(三)巩固练习。
1、填一填。
35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )
2、拓展练习。
运用学的规律,将计算过程变得简便些。
201950= 632547=
(四)全课总结。
这节课,你学到了那些知识?会用乘法分配律简便运算吗?
(五)布置作业。
第49页练一练第2、3题。
乘法分配律的教案设计篇4
教材分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便运算的基础上学习的。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分知识有利于提高学生的观察能力、比较能力和概括能力。同时,乘法分配律是学生以后进行简便运算的前提和依据,对提高学生的计算能力有着重要的作用。
学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算,在此基础上来学习乘法分配律应该不会觉着太难。但是学生的概括能力和归纳能力应该是一个薄弱环节。在教学的过程中本着自主探究的原则,让学生充分的观察、分析、比较、判断、举例、验证,通过大量的感知让学生理解乘法分配律这一运算定律的意义,并在理解的基础上有效的训练,形成数学模型,丰富应用的经验,提高简便运算的能力。
教学目标
1. 使学生进一步体验探索规律的过程,能自主发现乘法分配律,并能用字母表示。会用乘法分配律进行一些简便运算。
2. 经历推导、发现的过程,体验比较、分析、归纳、发现的学习方法,培养学生的分析、比较、综合概括能力。
3.通过自主探索的学习过程,激发学生学习数学的兴趣,培养学生独立思考的良好习惯。
教学重点和难点
教学重点:引导学生探索乘法的分配律。
教学难点:运用乘法分配律进行简便运算。
乘法分配律的教案设计篇5
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11 12×77+8×77
(12+8)×77 36×25+4×25
(58+12)×14 27×21+27×29
27×(21+29) 11×(58+49)
(36×4)×25 58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=( )×( )
五、布置作业
p.57第2、4、5、6题
乘法分配律的教案设计篇6
教学内容:
教科书例6、例7及“做一做”,练习十四。
(一)知识教学点
1.使学生理解乘法分配律的意义。
2.掌握乘法分配律的应用。
(二)能力训练点
通过观察、分析、比较,培养学生的分析、推理和概括能力。
(三)德育渗进点
通过乘法分配律的应用,激发学生的学习兴趣。
(四)羹育渗遇点
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验
(D识迁移类推,通过合作学习,学会知识。
1.教学重点:乘法分配律的意义及应用。
2.教学难点:乘法分配律的反应用。
小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。
(一)锚垫孕伏
1.口算:(卡片)
25× 17×4 125×24
引导学生说一说运用了什么运算定律,这样计算有什么好处?
2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)
(6+4)×5 6×4+4×5
(二)探究新知
1.导人新课:
前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使
一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)
2.教学例5:
(1)出示例5:
(2)引导学生观察、讨论、交流。
(3)教师引导学生观察两种算式,发现了什么?使学生懂得:
①两个算式相等。
②两个算式可用等号连接。
学生答,教师板书:(18+7)×6=150
18×6+7×6二150
(]8+7)×6二18×6+7×6 .
(4)教师出示:20×(15+9)
20× 15+20×9=480
20×(15+9)二20×15+20×9
组织学生分组讨论,使学生明确:每组中算式所表示的意义。
反馈练习:按题目要求,请你说出一个等式。(投影出示)
(——+——)×——=——×——+——×——
学生答,教师填写投影。
(通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发
散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐
达到水到渠成。)
教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:
①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘
数和乘数的位置。)
②两个加数分别同一个数相乘再把两个积相加。
③等号左右两边两个算式相等。
3.概括定律:
通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生
结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。
4.反馈练习:
横线上能填几?为什么?
(32+35)×4二——×4+——×4
(62+12)×3=——×——+——×——
教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个
数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学
生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)
5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学
们观察我们练习的乘法结合律,在运算上有什么特点?
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加
数分别同这个数相乘,再把两个积相加比较简便。
6.教学例7:
(1)出示例7:
102×43
=(100+2)×43
=4300+86
=4386
想:把102看成(100+2),再用43分别去乘100和2,可以用口算
用了乘法结合律。
教师说明:熟练后第二步可以不写,画上虚线。
(2)出示9×37+9×63
①组织同学讨论。
②组织同学阅读教科书第65页。
③启发学生明白了什么?
(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学
生知识迁移类推,通过合作学习,能够自己学会新知。)
(三)巩固发晨
1.练习十四第1题。
2.在横线上填上适当的数。
(”(24+8)×125=一×一+一×一
(2)25×(20+4)=25×——+25×——
(3)45×9+55×9=(——+——)×——
(4)8×27+73×8=8×(——+——)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相
同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×5 24×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×8 - 10×8+125× 8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42十29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29)
(2)与6×8—6×8相等的式子是( )
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9
5.练习十四第4题,投影出示。
6,分组计算练习十四第3题。
(四)课堂小结
③28×42×29
今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分
别与一个数相乘,再把两个积相加。
练习十四第2题
乘法分配律的教案设计篇7
教学目标:
1、借助画图的方式理解、掌握乘法分配律并会用字母表示。
2、能够运用乘法分配律进行简便运算。
3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。
教学重、难点:
理解并掌握乘法分配律。难点是乘法分配律的推理及运用。
教学过程:
一、情境导入:
出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?
二、探究发现,归纳总结。
(一)借助图形,感知模型。
1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?
请把想象的图画出来。交流学生作品后,出示
60米 30米
20米 《乘法分配律》教学设计
原面积 增加的部分
2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?
评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。
(二)借助图形,抽象模型。
1、出示几何图形:用两种方法解决问题。
60米 ( )米
20米 《乘法分配律》教学设计
原面积 增加的部分
刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?
2、交流:你想增加几米?怎样算?结论是什么?
师相机板书。
引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。
3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。
( )米 ( )米
( )米《乘法分配律》教学设计
原面积 增加的部分
4、交流:你是怎么猜测和验证的?结论是什么?
教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c
讨论:这个规律在数学上叫——?(板书课题——乘法分配律)
(三)借助图形,逆用模型。
1、出示计算题:
(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。
引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?
2、46×25+54×25、98×20+98×80
请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。
(四)借助图形,拓展模型。
1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?
你们能解决这个问题吗?试着算一算。
反馈交流:说说你们是怎么解决的?
我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。
2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?
谁能用字母来表示这个新规律呢?
师板书:(a-b)×c=a×c-b×c
三、科学练习:
【本文地址:http://www.pourbars.com/zuowen/72691.html】