通过编写教案,可以提高教师的备课质量和教学效果。编写教案要注意在教学过程中注重启发学生的思维,提高学生的学习能力。教案的编写需要注重学生的实际操作和参与程度。
商的变化规律课教案篇一
1、通过观察、比较、探索,使学生发现商随出数(或被除数)的变化而变化的规律
2、增强学生抽象、概括能力
3、养成善于观察勤于思考,勇于探索的良好习惯
4、观察、比较、探索商不变的规律
通过观察、比较、探索商不变的规律
1、导入
在上课之前,我们要先来做个游戏,题目是抢答,在游戏开始之前,老师要说规则,规则很简单就是要等老师说开始之后举手抢答,不可以乱喊乱叫。现在老师开始出题了,同学们看仔细了哦。
板书:80÷4=150÷15=
80÷8=300÷15=
80÷16=450÷15=
同学们真棒,这么快就抢答完毕了,真是抢答高手!
2、抢答结束,现在老师请同学们仔细观察左边的一组算式,其中的被除数、除数、商都有什么变化特点呢?同桌讨论下,一会儿老师要请同学们来说说你们的发现。
纠正错误,出示,被除数不变,除数扩大(缩小)几倍,商反而缩小(扩大)几倍。你真厉害真会概括。
现在请同学们看看右边的这组算式,你们能发现什么呢?可以采用刚刚的观察方法来说一说。还可以用刚刚概括地方法说一说规律。
除数不变,被除数扩大(缩小)几倍,商也扩大缩小几倍。
同学真会观察发现,这么快就找到了商的变化规律,除数和被除数变化时,商一定变化吗?怎么样商才不变呢?先认真想想,想好的同学举手告诉老师,一会儿老师要请同学说说你的猜想。
1若学生没有得出猜想,举例引导请同学们列出三条商为4的算式如:
16÷4=
32÷8=
64÷16=认真观察你有什么发现呢?
看来同学们都有发现,那现在先和同桌说说你的发现。
2得出一种猜想,你们可真是会猜想,现在打开书本93页,完成表格,验证下你们的猜想。通过表格,证明你们的猜想在表格中是成立的,那现在请同学们赶紧举个例子证明自己的发现吧。小组讨论,这些算式对不对呢?通过同学们的动手实践,我们得出了商不变的规律。
3得出多种猜想时,同学的猜想可真不少,学生说猜想老师板书,请同学们举举例子证明自己的猜想。刚刚同学用自己的例子证明了猜想,现在请同学们打开课本93页,再一次验证下你们的猜想。通过同学们的动手实践,我们得出了商不变的规律。
被除数、除数同时扩大或缩小相同的倍数,商不变。(齐读)
3、巩固练习,光说不练可不好,现在老师就要让大家练一练。
(1)运用商不变规律口算
120÷40=640÷80=810÷90=360÷60=
7200÷400=2400÷200=6400÷800=
哪一组举手的人最多老师就请哪一组开火车。其他组的同学认真听,他们组的答案对不对。
(2)学习了商不变的规律可以使我们的计算更为便捷,做一做
196÷4=392÷8=1960÷40=19600÷400=
28÷4=56÷8=168÷24=1680÷240=
课堂小结:通过这一节课的学习,你们都有什么收获呢?起来说一说。
这节课我们学习了商的变化规律以及不变的规律。
商的变化规律课教案篇二
教学过程:
一、创设情景,提出问题。
1.呈现研究素材:
6×2040×5。
160×56×10。
6×4080×5。
2.口算出得数。
3.观察这组算式,你能分一分吗?为什么这么分?
再次呈现:6×10=60160×5=800。
6×20=12080×5=400。
6×40=24040×5=200。
4、仔细观察、比较这组算式,你能发现什么?
学生自由说。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
2、学生小组讨论,教师巡视。
3、学生交流讨论结果。
4、教师相机总结:一个因数不变,另一个因数乘几,积也乘几。
5、师生共同探究第二组算式,并总结出规律:一个因数不变,另一个因数除以几,积也除以几。
学生举例说明。
7、师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
学生说,教师引导学生说简单些。总结出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
8、师:这个规律我们已经在不知不觉中使用,你知道什么地方我们使用过?
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
指名学生回答。
2、神奇缺8数来挑战。
12345679×9=111111111。
12345679×18=。
12345679×27=。
12345679×36=。
3、一辆汽车在公路上以60千米/时的速度行使,4小时可以行()千米。一列火车在铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行()千米。
先学生独立思考,然后交流解法,鼓励学生用两种方法解答。
四、全课总结,拓展延伸。
师:在这节数学课上,你们还有什么收获吗?
学生回答。
五、巩固练习:
1、找出规律再填空。
16×17=272。
16×34=272×()。
16×34=272×()。
(16÷)×17=272÷4。
2、判断题。
(1)两数相乘,一个因数不变,另一个因数乘4,积应该乘5。()。
(2)两数相乘,一个因数不变,另一个因数除以10,积应该除以10。()。
(3)长方形的面积=长×宽,如果长不变,宽变为原来的3倍,则面积也变为原来的3倍()。
(4)路程=速度×时间,如果时间不变,速度变为原来的几倍,路程也会变相同的倍数()。
3、算一算,想一想,你能发现什么规律?
18×24=432。
(18×2)×(24÷2)=。
(18÷2)×(24×2)=。
商的变化规律课教案篇三
教学内容:
教科书第57~58页,例2、试一试、练一练,练习十第3题。
教学目标:
1、使学生结合具体情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向平移后该图形覆盖的总数,并能解决简单的实际问题。
2、使学生主动经历自主探索和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾和反思探索规律过程的意识。
3、在小组合作与交流中,努力克服数学活动中的困难,获得成功的体验。
教学过程:
一、复习引入。
1、12345678910111213141516。
每次框出3个数,需要平移几次?可以得到几个不同的和?
说说自己的方法。
2、今天我们继续学习图形被覆盖的次数的规律。
板书课题:找规律。
二、教学新课。
1、出示例2。1、如果小芳家浴室的一面墙上改用由4块瓷砖拼成的图案贴在这面墙的任意一个位置,有多少种不同的贴法?(出示情境图)。
理解题意。
3、不论你贴在哪,最多能够有多少种方法?你们能解决吗?
请同桌两人合作平移,看有多少种不同的贴法。平移好了后就请大家围绕下面三个问题在小组里讨论。(电脑出示)。
(1)怎样贴,才能做到既不重复有不遗漏?
(2)沿这面墙的长贴一行有多少种贴法?沿着宽贴一列呢?
(3)一共有多少种贴法,与这面墙的长和宽各有多少种贴法是什么关系?
学生动手操作,完成后小组交流讨论。
4、交流汇报。
怎样数才能做到比较有序?
学生边汇报边演示。沿着长一行一行的贴,沿着宽一列一列的贴。(电脑演示)。
师:沿这面墙的长贴一行有多少种不同的贴法呢?
学生回答:8—2+1=7(板书:8—2+1=7)(电脑演示)。
师:平移了几次?有几种贴法?
学生回答。(电脑演示)平移了几次?有几种贴法?
(板书:6—2+1=5)。
师:这样一列一列的贴,贴了这样的7列,求贴法总数,就是求7个5。
师:5个7或7个5都可以写成5×7=35。
5、一共有多少种方法?与这面墙沿长和宽贴各有多少种贴法有什么关系?
得出:贴法总数=沿长的贴法×沿宽的贴法。
6、小结规律。
7、试一试。
1、小芳家阳台上的一面墙要贴这种图案的瓷砖,你能算出有多少种不同的贴法吗?(出示情境图)学生尝试练习,教师讲解。(电脑演示)。
板书:10—3+1=86—2+1=55×8=40。
师:为什么一个减3,一个减2?
2、如果贴的瓷砖图案是这样呢?有多少种不同的贴。
法呢?仔细观察以下,这个图形与刚才的图形有什么不同?(电脑演示)。
学生异口同声:长方形。(电脑演示)。
师:你是怎样想的,可以和小组里的同学交流。
8、练一练。
独立完成。
汇报交流自己的思考方法。
三、巩固练习。
1、完成练习十第3题。
理解题意。
指导方法。
任意框9次?看看框出的每个数的和是多少?与中间的数有什么关系?
根据这个发现,你能解决第(2)小题的问题吗?
说说你是怎样框的?
2、独立完成第(2)、(3)小题。
说说思考过程。
四、课堂小结。
商的变化规律课教案篇四
前两天学习了小数点移动引起小数大小变化的规律,知识比较抽象,所以发现学生学习起来比较有难度。对小数点的移动,特别是位数不够时,学生很容易把小数点点错位置,导致出错。本课的重难点是小数点移动的方法及当位数不够时用“0”补足的处理,所以要把较为抽象的内容具体化。
在课一开始通过孙悟空金箍棒的长短变化导入,吸引学生兴趣探讨下去。借助课件演示,使学生很清楚看到小数点的移动的过程,从而知道小数点移动会引起小数大小的变化。然后让学生观察小数点的变化和金箍棒的长短有什么联系,学生马上可以说出小数点向右移动一位,金箍棒就扩大到原来的10倍。然后让学生通过观察、数、移、归纳,理解与掌握小数点移动的规律及方法。在这里,强调小数点移动后要去掉整数部分前面多余的0,以及结果是整数时,小数点省略不写。在这基础山,利用知识的迁移过渡到一个小数除以10时,小数点移动的规律,理解“整数部分一个单位也没有,就用0来表示”的问题。
总之,通过具体的演示,学生已理解并基本掌握了知识。但是做题过程还不够熟练,很同意出错,所以还需加强练习,强化学习效果。
商的变化规律课教案篇五
1.学生能在生动、活泼的情境中找出直观事物的变化规律。
2.培养学生的观察、概括和推理的能力,提高学生合作交流的意识。
3.培养学生发现和欣赏数学美的意识,使学生知道事物排列的规律中隐含的数学知识。
教学重难点。
帮助学生理解“循环排列规律”,引导学生发现图形的简单排列规律。
教学过程。
一、创设情景,导入新课。
生:发音是有规律的。
在生活中,你知道哪些事物或现象是有规律的呢?
生畅所欲言。
1、情境导入。
2、感知规律。
师:好,那我们就一起去吧。看!这就是喜羊羊家的墙面和地面(出示课件)漂亮吗?可是,这里有规律吗?这节课我们就来找规律。板书:找规律。
(设计意图:从学生喜闻乐见的方式来引出课题,能有效地吸引学生的注意力,使学生对本节课的内容产生浓厚的兴趣。)。
二、引导探索,寻找规律。
1、找墙面图案的规律。(自由看)。
师:请大家仔细观察喜羊羊家的墙面,有规律吗?有怎样的规律呢?你能说说吗?你们真聪明!
(设计意图:让学生通过观察墙面的规律,使学生的发散性思维得到提高。)。
2、找墙面图案的规律。(横着看)。
师:下面请大家结合这些问题再仔细观察一下墙面。横着看,每行都有什么图形?每行图形的位置发生了变化吗?第一行的第一个图形在第二行的哪一个位置?第一行是怎样变成第二行的?(同桌讨论)。
(1)学生自由发言说发现。
(2)教师在小黑板用实物来板演规律。
(3)课件演示规律,深化认识。
师:如果从下往上看呢?(反过来)。
3、找墙面图案的规律。(竖着看)。
(1)学生自由发言说发现。
(2)课件演示规律,深化认识。
总结墙面规律:象刚才同学们发现的这些规律就是循环排列规律。
(设计意图:通过问题的引领,使学生能有逻辑地理解墙面的存在的循环排列规律,培养学生的观察、概括和推理的能力。)。
4、找地面图案的规律。
师:同学们,喜羊羊家的墙面有这样的规律,那么它家的地面图案又有什么规律呢?(出示课件)。
让学生自由发言说发现。(注意引导学生说出与主视图的不同。)。
(设计意图:让学生去比较墙面和地面的规律的相同点和不同点,使学生更好理解循环排列规律。)。
三、自主探究,应用规律。
1、摆一摆。(课件出示水果图)。
好客的喜羊羊为我们准备了很多好吃的水果,可是,他只摆了三组,第四组的水果他想请你们自己来摆,你们会吗?(先看看前三组有什么规律?)拿出小信封中的水果卡片动手摆一摆,看谁先摆好就请他吃水果。(改编课本做一做)。
2、下面一组怎么排呢?
3、选择合适的图形添在横线上。
(设计意图:让学生在具体的情况中,更好地进行动脑、动眼、动手、动口,使学生的操作能力得到提高。)。
四、课间欣赏,感受规律美。
(课件出示生活中的图片)。
(设计意图:培养学生发现和欣赏数学美的意识,使学生知道事物排列的规律中隐含的数学知识。)。
五、联系生活,创造规律。
师:同学们,你们送了礼物给喜羊羊了吗?你们想不想自己设计一块手帕送给喜羊羊。(出示一张长方形的纸)。
师:这是一块长方形的“手帕”,可是上面什么图案也没有,需要同学们用手中的学具,给这块手帕设计出有规律的图案和花边。请同学们先为手帕设计有规律的图案。请小组长拿出学具袋1,并倒出里面的水果卡片,水果卡片后面都有双面胶布需要先撕开,后贴在手帕上。同学们要先商量怎样贴才能设计出有规律的图案,要充分利用手中的图片,同桌合作完成,看哪个小组设计的图案最漂亮,开始。
(课件出示活动要求)你能不能为你的手帕设计有规律的花边呢?请小组长拿出学具袋2,并倒出里面的动物卡片,为你的手帕再添上有规律的花边吧。
学生动手设计,教师巡视指导。
六、展示作品,互相评价。
将学生的作品贴在黑板上,互相评议。
(设计意图:在这个环节中,安排一个“小小设计师”,便以学生运用学到的知识去创造生活美,同时也利于培养学生的想象能力、创新能力、合作能力和审美能力。)。
七、总结。
同学们,我代表喜羊羊谢谢你们,为他设计了那么多漂亮、有规律的手帕给他,谢谢!今天的课就上到这里。
商的变化规律课教案篇六
知识与技能:
1、学生通过观察,能够发现并总结积的变化规律。
2、初步获得探索规律的一般方法和经验,发展学生的推理能力。
3、培养学生用数学语言表达数学结论的能力
4、通过练习,进一步巩固积的变化规律,并能应用规律解决问题。
过程与方法:
1、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
情感、态度和价值观:
培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
引导学生自己发现并总结积的`变化规律。
引导学生自己发现并总结积的变化规律。
图片
教师导学
一、研究“两数相乘,其中一个因数变化,它们的积如何变化饿规律。
1、研究问题,概括规律(例4)
观察下面两组题,说一说你发现了什么?(1)6×2=12
(2)20×4=806×20=120
10×4=40
6×200=1200
5×4=20
6×2=
8×125=6×20=
24×125=6×200=
72×125=组织小组交流
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
25×160=40×4=
25×40=20×4=
25×10=引导学生概括:
两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
4、整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?引导学生总结规律。
2、验证规律1)先用积的变化规律填空,再用笔算或计算器验算。26×48=
17×12=26×24=
17×24=26×12=
17×36=
自己举例说明积的变化规律
5、应用规律
完成例4下面的做一做和练习9的1-——4题
二、研究“两数相乘,两个因数都发生变化,积变化的规律“。
2、组织全班交流,概括规律
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
三、巩固新知
1、p51“做一做”
2、思考:一个长方形的面积是256平方厘米,如果长缩小到原来的
四、总结
这节课有什么收获?
五、作业:练习九第1题
商的变化规律课教案篇七
今天下午,我们全校数学老师参加了好课共享听课活动,听的是骆璇老师的《积的变化规律》。骆璇老师的这堂课轻松精彩,使我有幸又一次见识了生本课堂上的数学魅力。
《积的变化规律》这堂课是主动教育的范例,今天听了骆老师的这堂课形式独特,设计新颖,更是得到了老师们的一致好评。让我知道了我今后的课堂该如何怎样去做。
开篇开门见山。一开课就揭示课题和出示问题生成单。根据各自提出的问题小组商讨提炼最想研究的问题。在时间上得到了保证。从汇报的结果也看的出,学生实实在在把问题落到了实处,每组能找到解决问题的恰当的方法。我觉得学生的主体得到了体现。当然老师的组织引导也非常到位,体现了老师的智慧。值得我好好学习。
精彩的过程。第二环节是学路建议。明确活动要求后,选择一组题进行研究,和上一环节的处理是一样的。这样学生在小组讨论中,发挥集体的智慧,群策群力。让学生自己经历研究问题的一般方法。研究具体问题——归纳发现规律——解释说明规律。通过这个规律的探索,学生理解了两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化。这一过程老师给了学生充足的时间学习,而不是流于形式。同样体现了学生的主体地位。学生在活动中思维得到了发展,得到提高。能力得到了提高。
这一活动我认为是本节课的一大亮点。动手操作符合小学生好动的特点,“实践是创新的源泉”,老师充分认识到了学生具有活动实践的.天性和创造成功的欲望,大胆放手让学生“多动”,尽量让他们在“做中想,想中学”,亲身经历各种探索活动。
精彩的应用。分a类和b类练习,即注重了基础学生的培养,又注重了优生的思维拓展。练习题的巧妙设计突破知识的难点。让学生感受到了数学的魅力。我个人觉得既巧妙又难得。这体现在b类题的处理上。值得我学习。同样体现了学生的主体地位。
整节课真的是让学生去积极的探索,主动去学习,很好的满足了不同的学生,不同层次的学生的学习机会。
骆老师为我们展现的是一节“生本高校课堂”,时时处处能让听课者感受到活力的绽放,智慧的迸发,真正做到了从学生实际出发,为学生成长服务,这种以生为本的教育理念值得我们学习和借鉴。通过这节课也使我进一步体会到生本课堂的魅力需要我们老师的不断努力。
商的变化规律课教案篇八
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
教材利用学生已有的计算技能,通过计算填表,提出问题引导学生自己思考发现商的变化规律。这部分内容渗透函数思想。这部分内容的教学可以巩固所学的计算知识,同时培养学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好习惯。
学情分析。
本节课从而激起学生一探究竟的兴趣。
关于商的变化规律,主要包含了商变和商不变两个内容,以前面掌握了乘法运算和除法运算为基础,从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。学生比较难理解被除数不变,除数和商之间的变化规律。
教学目标。
1、通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2、引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3、培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点和难点。
难点:正确理解被除数不变,除数和商之间的变化规律。
商的变化规律课教案篇九
1.创设情境,引导学生独立尝试探究。
教学时,为学生营造宽松的学习氛围,便于学生发现并提出问题。在教学例3时,直接出示两组题,通过对算式的观察,让学生讨论:因数变化了吗?积变化了吗?积变大了还是变小了?你能猜出现在的积是多少吗?你是怎样猜想的?让学生在主动观察、讨论交流、猜想验证等活动中感受积的变化规律。为学生创设猜想与验证、辨析与交流的空间,激发学生的学习兴趣,使课堂充满活力。
2.注重规律的概括、总结与验证。
在教学过程中,让学生依据给出的乘法算式,逐步探究出一个因数不变,另一个因数乘几或除以几(0除外),积也乘或除以几的变化规律,并及时组织学生交流,引导学生将规律从现象上升到文字表达。在此基础上,及时举例验证,强化规律理解,这样的探究过程丰富了学生的学习体验,突破了思维和认知的障碍。
教师准备ppt课件
学生准备计算器
创设情境,引入新课
2.引导学生观察,发现问题。
6×2=12(元)
6×20=120(元)
6×200=1200(元)
师:观察、比较这三个算式,它们有什么特点?
预设生1:其中一个因数相同,都是6。
生2:另一个因数分别是2、20、200,分别扩大到原来的10倍、100倍。
生3:积也扩大了。
3.揭示课题。三个算式之间的变化有一定的规律,这节课我们就一起来探究积的变化规律。(板书课题)
设计意图:例题算式没有以纯算式的方式呈现,而是结合身边的生活情境给算式赋予一定的生活意义,让学生感受数学知识就在身边,激发学生的学习兴趣。
合作交流,探究规律
1.探究一个因数不变,另一个因数不断变大,积的变化规律。
(1)课件出示第一组算式:
6×2=12
6×20=120
6×200=1200
(2)学生独立观察并思考。
(3)请学生说说所观察到的变化。
(4)集体汇报:
预设生1:第1小题和第2小题相比较,因数6不变,2×10=20,12×10=120,第二个因数乘10,积也乘10。
生2:第2小题和第3小题相比较,因数6不变,20×10=200,120×10=1200,第二个因数乘10,积也乘10。
生3:第1小题和第3小题相比较,因数6不变,2×100=200,12×100=1200,第二个因数乘100,积也乘100。
商的变化规律课教案篇十
教学目标:
2.在探索规律的过程中,培养学生初步的观察、比较、归纳,概括的能力和主动探索数字规律的兴趣。
教学重、难点:
商的变化规律课教案篇十一
我讲的是人教版小学数学四年级上册第五单元“商的变化规律”,这是一节新授课,“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。通过计算比较,提出问题,引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好习惯。
通过本节课的教学,使学生理解掌握商不变的性质,会用商不变的性质对口算除法进行简便运算。学生在参与,观察,比较,猜想,概括,验证等学习过程中体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
根据课程标准要求:小学数学教学要达到知识与技能,过程与方法,情感态度与价值观三维目标的有机结合,由此我定了一下教学目标:
通过计算,观察,比较,探索,使学生发现商随除数(或被除数)的变化而变化的规律。培养学生初步抽象和概括的能力。培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的'兴趣。
教学重点难点:通过观察比较,探讨发现商的变化规律,掌握规律。
教学方法:探究法,合作法,观察法,比较法。
教具准备:实物投影,题卡、小黑板
我们的校本研修主题是:在数学课堂中如何使用激励性语言。我在本节课中的每一个教学环节,都要抓住适当的时机,适时,适当,适量的对学生进行激励性评价,建立评价目标多元,评价方法多样的评价体系,以达到全面了解学生的数学学习历程,激励学生学习热情,促进学生全面发展的目的。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为六大环节进行的。
第一环节谈话引入,有利于吸引孩子注意力,激发学生学习兴趣。
第二环节,探究新知。我把例题用投影展示,既直观形象,又节省时间,快速达到目标。在这一环节当中有三个变化规律要探讨,第一个规律是被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,再放手让学生自学这一规律,就很容易了。第三个规律,是被除数和除数同时变化,相同的倍数(零除外)商不变。这是本课的重点内容,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
第三环节是运用规律。采取了由易到难的设计方案,首先完成练习十七的四题,直接运用本节课所学的规律;第二完成五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。
第四环节,拓展训练。难度在此基础上又加大了一点,即锻炼学生的思维能力,又加深了对商不变规律的进一步理解。反馈练习加深巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。
第五环节,归纳总结,启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。
六、板书设计、
这样设计的板书简洁明了,使学生对本课的重点一目了然。在对比下,便于学生掌握商的变化规律。
商的变化规律课教案篇十二
尊敬的各位评委老师:
大家好!(鞠躬)我是小学数学组几号考生,今天我说课的题目是《积的变化规律》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,首先我想谈一谈我对教材的理解。《三位数乘两位数》是人教版四年级上册第四单元《三位数乘两位数》中第二课的内容,学生在学习这节课之前,已经掌握了三位数乘两位数的基本运算法则,这为本节课的学习奠定了良好的认知基础,而本节课的学习也为后边进一步学习乘除法做了铺垫,所以本节课在教材中有着重要的地位和作用。
一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。
根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:
知识与技能目标:能理解并掌握积的变化规律,并能够熟练运用规律进行简单计算。
过程与方法目标:通过观察独立思考,经历小组合作探究,归纳积变化规律的过程,提高简单计算数问题的能力。
情感态度价值观目标:在参与学习的过程中,感受数学思考过程的条理性和魅力,体验成功的喜悦,激发学习数学的兴趣。
根据教学目标,我确定了本节课的重点和难点。重点为掌握乘法里积的变化规律,,而理解积的变化规律的归纳过程为本节课的难点。
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。
为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课
为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放向学生展示两组算式,6×2=12,6×20=120,6×200=1200;20×4=80,10×4=40,5×4=20六个式子,然后我会学生抛出问题,这两组式子都有什么样的特点,又有呢些规律呢?继而引出本节课课题--积的变化规律。(板书题目)。
多媒体课件展示两组乘法算式有关的内容,更有利于激发学生深厚的学习兴趣和求知欲望,快速的进入学习状态。
(二)自主探究,感受新知
进入正式的新课讲授环节,我会继续向学生提问,那我们回到刚才这个问题,这两组式子都有什么样的特点呢?然后安排学生进行独立思考,经过学生独立思考不难看出,这两组式子第一组式子中第一个因数不变,第二个因数不断变大,积也在不断变大,在第二组式子中一个因数不变,另一个因数不断变小,积也同样的在不断变小。
我将继续向学生提问仔细观察着两组式子,每一组式子中三个式子之间又有什么样的规律呢?接下来组织同桌两人进行交流,经过同桌交流,同学们基本可以得到第(1)组题中,第2、3题同第1题比,第二个因数分别乘了10、100,同样的第2、3题的积同第1题相比各分别乘了10倍和100倍。
第(2)组题中,第2、3题同第1题比,第一个因数分别除以了2、4,同样的第2、3题的积同第1题相比各分别除以了2倍和4倍。对学生的结论我会给与表扬和肯定。
随后我会继续引出,上边这两组例子,在我们计算乘法和除法的过程中,能给我们带来哪些启示呢,这个规律具不具有普遍性呢?组织学生进行小组讨论验证,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
经过学生小组讨论不难得出在乘法计算当中,一个因数不变,另一个因数乘以几,积也乘以几,同样的,一个因数如果除以几,0除外,那积也需要除以几,继而引出,这就是本节课所要学习的积的变化规律。
以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。
(三)巩固练习,强化知识
我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。
(四)课堂小结
我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。
(五)布置作业
针对学生的年龄特点,我会让学生在课下仔细观察自己家中有哪些利用平行四边形而创造的物品并记录下来,在下节课将一起来交流、讨论。
(六)说板书设计
一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。
以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)
商的变化规律课教案篇十三
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的`计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
商的变化规律课教案篇十四
《积的变化规律》是在学生掌握一定的乘除法计算方法和用计算器进行计算的基础上教学的,本课用计算器来探索一些积的变化规律。
本课的教学思路:用口算导入,其中口算中安排了一些因数变化的对比题,如:25×4和25×8等。口算完成后,教师板书:3564×158=?你能口算吗?怎么办?使学生明白用计算器方便我们进行大数目的或复杂的运算。
新课教学,出示教材中的例题,帮助学生理解题意:积的变化是什么意思?跟谁比变化了?怎样计算?在计算前,先让学生猜一猜:你觉得积会怎样变?能提出你的猜想吗?然后学生借助计算器进行计算,填写教材中的表格。集体交流,提出问题:你的猜想正确吗?那在其他的乘法算式中还有没有这样的规律呢?写出一道算式,运用刚才的方法去试一试,并在你的小组里交流。小组汇报,并总结出积的变化规律——一个因数不变,另一个因数乘几,得到的积就是原来的积乘几。
巩固练习,由浅入深。先是模仿例题的练习,根据规律直接填表;然后是直接根据一道算式填出变化后的得数;最后是应用规律解决生活中的实际问题,如:购买同一种商品,数量发生变化,总价也跟着发生相同的变化。
教学后,有几点体会:
一、在充分经历中感悟。
在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。
二、在充分感悟中提炼。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
不足之处:
一、教师的语言不够凝练。如:引导学生用计算器探索变化规律时,提的问题太多,不利于学生独立分析和思考。
二、缺乏耐心,不善等待。如:第1题练习,当学生没有自觉地应用规律进行计算时,教师缺乏耐心,直接请发现规律的同学起来说。如果当时能引导这位同学观察一下,因数怎样变化的,能不能不计算就报出积是多少?等待会让课堂和谐和大气。
三、练习设计可以更有深度。如:设计逆向思维的练习,在表格中加入已知积的变化求因数的变化;拓展练习,因数同时变化,求积等。
《积的变化规律》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
商的变化规律课教案篇十五
例[4]通过学生观察两组乘法算式,引导学生探索当其中一个因数不变时,另一个因数和积的变化情况,并从中归纳出因数和积的变化规律,渗透变与不变的函数变化规律。第一组呈现的是:当一个因数不变,另一个因数扩大几倍,积也扩大几倍;第二组呈现的是:当一个因数不变,另一个因数缩小成原来的几分之一,积也缩小成原来的几分之一。在教学中,侧重的是让学生在计算练习中理解数的变化,至于如何准确的表述出来,并不重要。
练习九的5题练习题都是应用积的变化规律来解决实际问题的,要引导学生先找到变化规律,理解题意后再解答。特别是第4题,苹果5元3千克,不能算出1千克多少元,只能应用变化规律来解答:5元能买3千克,打算买6千克,千克数是原来的2倍,积也是原来的2倍,即5×2=10元。
教学目标。
(2)、初步获得探索规律的一般方法和经验,发展学生的推理能力。
(3)、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学设计:
一出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主学习,探索新知。
1、现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3、猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
4、同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
5、你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
教学建议和教学思路。
本课内容的学习需要学生的自主探索和合作交流,因此,教学时可以让学生以小组为单位,互相交流自已的想法和发现的规律,对所得到的信息、资源进行整合、概括,教师则作适时的提示、补充和纠正。
【本文地址:http://www.pourbars.com/zuowen/7503101.html】