教案是教学的依据和组织者,对教学过程和教学效果起着重要作用。教案的结构应该清晰合理,包括导入、呈现、练习、巩固和评价等环节。阅读这些教案范文可以了解到教师的教学思路和教学方法。
多边形平行四边形的面积教案篇一
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
:学习卡,每个学生准备一个平行四边形。
一、导入。
1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
1、用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
3、教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4、出示例1。读题并理解题意。
三、巩固和应用。
1、判断,并说明理由。
2、计算。
四、体验。
五、作业:练习十五第1、2题。
六、板书设计。
s=ah。
多边形平行四边形的面积教案篇二
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
掌握平行四边形的面积计算公式,能运用公式解决实际问题。
理解平行四边形面积计算公式的推导方法与过程。
平行四边形、学习单等。
课前布置预习第87——88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
生:表面的大小,面积计算公式是长乘宽。
生:平行四边形
师:平行四边形的面积怎么计算呢?今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)
多边形平行四边形的面积教案篇三
1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
课前布置预习第87――88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事。
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢x。
生紧张,激动……。
师:同学们,你们知道曹冲称象的故事吗x谁来说一说x。
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的'数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢x。
生:长方形。
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢x。
师:平行四边形的面积怎么计算呢x今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。
多边形平行四边形的面积教案篇四
教学内容。
教材64~66页的例题和“做一做”,练习十六的第1~3题。
教学目标。
能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
情感目标:引导学生运用转化的思想探索规律。
教学重点。
教学难点。
教学准备。
powerpoint课件、平行四边形纸片、剪刀。
教学过程。
教学环节。
师生活动。
设计意图。
复习引入。
(二)出示不规则图形1。
15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。
3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。
结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。
突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。
公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。
练习反馈。
底5厘米,高3.5厘米底6厘米,高2厘米。
2、计算下面图形的`面积哪个算式正确?(单位:米)。
83。
4
6
3×83×64×86×83×44×6。
56平方厘米8厘米。
5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。
分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。
全课总结反思体验。
这节课我们学习了什么?你有哪些收获?
小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
作业。
多边形平行四边形的面积教案篇五
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
学习卡,每个学生准备一个平行四边形。
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
1、判断,并说明理由。
2、计算。
练习十五第1、2题。
s=ah。
多边形平行四边形的面积教案篇六
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
教学难点:
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡。
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究。
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1。
六、课堂小结,反思回顾。
多边形平行四边形的面积教案篇七
教学内容:人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:掌握平行四边的面积计算公式,并能正确运用。
教学过程:
一、情境激趣。
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)。
二、自主探究。
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
a.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
b.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
a.形状变了,面积没变。
b.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑。
四、课堂总结。
通过这节课的学习,你有哪些收获?(学生自由回答。)。
五、巩固运用。
1.练习十五第1题,让学生独立完成后反馈答案。
4.练习十五第3题。
六、全课小结(略)。
多边形平行四边形的面积教案篇八
本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。
二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。
经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。
掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。
能运用平形四边形的面积计算公式解决相关的问题。
实验探究、推理验证、小组合作学习。
课件、剪刀、准备平行四边形若干。
一、开门见山,导入新课。
二、新知探究。
1.分析平行四边形给定的3个数据所表示的意义。
猜想:
(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。
(2)提出来数方格的。方法来试一试。看选择哪两个数来计算比较好。
3.借助方格纸数一数,比一比。
学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。
要求:
(1)独立完成。
(2)小组内交流一下你的想法。
(3)方法展示。
这只是我们的猜想,那如何来验证我们的猜想是否成立呢?
4.平形四边形如何转化为长方形,验证猜想。
(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)。
(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。
(2)是不是沿任意一条高剪开都可以拼成长方形呢?
动手操作,验证猜想。
(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?
生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。
(4)再仔细观察,你还有什么发现?
生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
(2)你会填吗?
a、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积(),长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),因为长方形的周长=(),所以平行四边表的面积=()。
b、如果用s表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:s=()。
三、实践应用,巩固与提高。
1.计算下列图形的面积(抢答)。
(1)底为4厘米,高为2厘米。
(2)底为5分米,高为9分米。
(3)底为3米,高为7米。
2.判断,并说明理由。
四、课堂小结。
1.你今天学习了什么?有何收获?
长方形的面积=长×宽。
s=ah。
多边形平行四边形的面积教案篇九
10月12日我校开展小学数学图形与几何教学研讨活动,特级教师苏云燕为我们展示了一节高效的数学课《平行四边形的面积》,下面我就谈谈自己听课的体会:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。整个教学设计中,注重了学生空间观念的培养,主要体现在让学生经历获取知识的过程,整个教学活动让学生经历“发现问题,分析问题,大胆猜测,动手转化,验证猜想,解决问题”的过程,让学生不止获取了知识,对知识获取的过程更是记忆深刻。学生动手操作,把已知知识运用到未知知识中,将未知知识转化为已知知识。
一、注重数学思想方法的渗透。
苏老师先是课件出示学生喜爱的动画卡通人物熊大、熊二,吉吉国王给它们分了两块地(等底等高的长方形与平行四边形),熊二不高兴认为自己的地小了,苏老师先让学生大胆猜测,这两块地,到底那一块大?再让学生通过动手操作、验证平行四边形的面积,发现其实这两块地的面积是一样大的。这样的导入激发了学生学习的兴趣。
二、注重了师生互动、生生互动。
三、注重学生数学思维的发展。
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的`心理活动统一起来。在这节课中,苏老师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
-->
-->
-->
-->。
多边形平行四边形的面积教案篇十
在学生们学习习近平行四边形的面积计算之前,必须让他们了解平行四边形的图形、分类,平行四边形的底以及对应的高。由于学生初次接触这些知识,所以通过讲授式教学方式(讲授式教学方式:教师通过口头语言系统连贯地向学生传授知识的方法。)让学生自己掌握,为学习习近平行四边形面积的计算打下基础。在教学平行四边形面积的计算时,就要引导以学生自己探索为主,从而贯彻启发式教学。
2.动脑思考怎样把平行四边形转化为之前已经学过的图形――长方形;然后引导他们使用“割补法”;再动手操作,把一个平行四边形沿一条高线剪开,拼成一个已经学过的图形;(同时创设平行四边形与长方形、正方形相联系的情景)。
然后得出:任意平行四边形的面积与等底等高的长方形的面积相等,进而得出平行四边形的面积=底x高。从中可以发现,通过学生的动手操作,主动探索,加上教师的讲解、铺垫,学生就会很轻松地掌握了平行四边形面积的计算方法。我们可以发现在此过程中根本不需要教师再滔滔不绝的讲解,学生也无需死记硬背公式,但平行四边形面积的计算方法却已根植于他们的脑海中,这是因为“学生们参与了知识的形成与建构的过程”。
以上平行四边形面积计算的教学实例,是属于探究类的例子。让学生利用以往已学过的知识在教师的穿针引线下,自行找出结果。这一过程中,学生并不是单纯的学到了新知识,而重要的是学生亲自得出结论后在心理上获得成功的喜悦更有助于学生学习积极性与主动性的培养。从而实现“教师向学生提供充分的从事数学活动的机会,帮助他们在自主探索和合作交流中真正理解和掌握基本的数学知识与技能、数学思想与方法,活动广泛的数学活动经验。这样也符合数学新课程标准所指出的:在数学教学中,教师应该充分自身组织者、引导者、合作者的作用,从而使得学生在学习过程中主题地位得以展现得淋漓尽致。
将本文的word文档下载到电脑,方便收藏和打印。
多边形平行四边形的面积教案篇十一
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
掌握平行四边的面积计算公式,并能正确运用。
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
动手操作、小组讨论、演示等。
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
1、用数方格的方法验证:
2、猜测:
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)。
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)。
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
3、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
多边形平行四边形的面积教案篇十二
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
多边形平行四边形的面积教案篇十三
《平行四边形的面积》教案商丽娟教学目标:通过探索,理解并掌握平行四边形面积计算公式,能运用公式解决实际问题。渗透图形间相互联系、互相转化的思想,初步学会用转化的方法解决问题。培养学生观察、分析、概括、推导能力,发展学生的空间观念。教学重点:通过探索,理解掌握平行四边形面积计算公式。教学难点:探究平行四边形面积计算公式。教具学具:多媒体课件、平行四边形、剪刀、直尺教学过程:一、导我们学过面积的有关知识吗?你能计算出下面图形的面积吗?课件依次显示:长方形、正方形。学生口答。课件显示:平行四边形(不标数据)需要老师给你们提供哪些数据呢?(提供数据)请同学们根据有关数据列出算式。(生列算式,指名板演。)二、学1、交流预设:5×4你能说说想法吗?(学生可能由长方形面积=长×宽想到平行四边形面积=长×宽)同学们看到平行四边形时,都想到了另外一个图形――?平行四边形和长方形有什么联系?请学生到台前利用学具把平行四边形拉成长方形。观察思考:平行四边形面积是不是等于长乘宽?预设:学生想不出时,引导学生观察平行四边形和长方形面积是否相等。说明:看到平行四边形想到长方形,运用了一种数学方法转化,只是转化过程中忽略了面积大小。没关系,我们有平行四边形(纸),可以帮助我们进一步来研究。2、探究出示要求:同桌合作,利用剪刀、直尺、铅笔等工具,把平行四边形转化成和它面积大小一样的.长方形。学生动手操作。指名学生展示,汇报交流。重点问题:沿着哪条线剪?可不可以不沿高剪?是不是只有这一种剪法?多媒体展示“剪移拼”过程,学生思考平行四边形和转化后的长方形关系,推导出平行四边形面积公式。三、练1、基础练习。看图口答。2、近似平行四边形草坪。提供高、底数据,求草坪面积大约是多少。指名板演,其余学生独立完成,后交流。四、结刚才,我们运用新知识帮老师解决了难题。我们学的是什么新知识?这就是我们本节所学平行四边形的面积。(板书课题)那平行四边形面积公式是什么?我们在探究过程中还运用了一种数学方法――(转化),希望以后运用转化探究出其它平面图形的面积。板书设计:平行四边形的面积长方形的面积=长×宽转化平行四边形面积=底×高
-->。
多边形平行四边形的面积教案篇十四
生1:卡片。
生2:奖品。
……
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的面积。
教学反思
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的.。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:s=ab2。
生4:我能把它剪成两个梯形教后反思
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
多边形平行四边形的面积教案篇十五
教学内容:。
教学目标:。
2,通过操作,观察,比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析,综合,抽象,概括和解决实际问题的能力.
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式.
教学方法:动手操作,小组讨论,启发,演示等教学方法.
教学准备:。
要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:;。
2,剪刀,三角尺,文具(铅笔,橡皮等)。
3,板贴。
教学过程。
一,导入。
师:同学们,能告诉老师你最熟悉的平面图形吗。
生:长方形,正方形.
生:长方形的面积=长×宽正方形的面积=边长×边长。
二,体会"转化"的数学思想。
师:(出示图1)你能将这个图形变成我们熟悉的图形啊。
生:汇报:。
师:你发现了什么。
生:形状变了,面积不变.
师:(出示右图)这是什么图形(揭题:平行四边形)。
你能把这个图形变成你熟悉的图形吗。
生:能.
师:同学们,用你自己的方法把你的想法表示出来:。
学生尝试用自己的方式把平行四边形转化成长方形.
…………。
汇报:。
生1:我是画图的,。
生2:我是采用剪,拼的方法,先画一条高,沿着高剪下,移到另一边.
如图:。
生3:我也是采用剪拼法,但我和生2不一样,如图:。
师:看了三个同学的方法,你有什么收获啊。
生1:都采用了转化的方法.
生2:他们都要先画一条高,然后沿着高剪下,我想因为这样就可以得到直角.
生3:图形是转变了,面积不变.
二,动手测量,推导公式。
学生动手测量数据,进行计算.
………。
交流汇报:。
生1:我量的是长方形的长和宽,长是6厘米,宽是4厘米,面积是24平方厘米.因为长方形的面积就是平行四边形的面积,所以平行四边形的面积是24平方厘米.
生2:我量的是平行四边形的底和高,因为我认为平行四边形的底等于长方形的底,高等于长方形的宽,那么平行四边形的面积等于底×高.底是6厘米,高是4厘米,面积是24平方厘米.
师:两个同学都说的很好,同学们你们会了吗。
生:会了.
生:3×6=18(平方厘米)。
三,应用新知,深化理解。
2,。
3,综合练习。
生:等底等高,面积相等.
师:和这两个面积相等的平行四边形你还能在画几个吗。
生:有无数个,只要等底等高就行了.
四,引导回顾,师生总结。
板书设计:转化图形寻找联系推导公式。
五,课后反思:。
1,数学课堂教学中教什么比怎样教更重要,在平行四边形面积计算的教学中,我们是让学生掌握平行四边形面积的计算方法还是在平行四边形面积计算方法的教学渗透转化的数学思想,两者中我侧重于后者.
如何渗透数学思想呢从一开始,我让学生把不规则的图形变成已熟悉的图形,触动学生思维的联结点,凸显"转化"的动因.接着出示平行四边形,学生自然而然想到平行四边形可以转化成长方形.
在"你能将平行四边形转变成我们熟悉的图形吗"这个问题的驱动下,学生在静静的思考后,在"你能用自己的方法把你的想法表达出来吗"这一追问下,学生尝试画一画,剪一剪,拼一拼.操作的轨迹由想象操作到动手操作再到想象操作,学生的转化方法从模糊变为清晰.
3,在练习设计中知识的巩固和思想方法的应用并重.口算题是直接应用平行四边形面积计算公式,让学生进一步巩固知识.变式练习(右图)学生需要判断底和对应的高,此时我在一次提出可以把这个平行四边形看成怎样的长方形,从而能更深刻的理解底和高一定要对应的道理,对数学思想方法的认识也上升为数学思维策略,从而实现学生数学思维的提升.
多边形平行四边形的面积教案篇十六
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的'特征。大家觉得有道理吗?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
多边形平行四边形的面积教案篇十七
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。
(教学目标)。
知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】。
平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)。
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2.小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)。
多边形平行四边形的面积教案篇十八
生:形状,角度,面积。
师:那面积是变大还是变小。
生:此时回答不一。
教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)。
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。
方法二:转化法。
师:有什么发现?
生:长方形的长等于平行四边形的底、宽等于平行四边形的高。
师:是这样吗?师课件演示解说强调平移。
师:还有其他的剪拼方法吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
师:你们觉得这几种方法有没有共同之处?
(都是沿高剪开的,都是把平行四边形转化成长方形)。
课件演示,结合课件填写各部分间的相等关系。
板书:底=长高=宽长方形的面积=正方形的面积。
师:我们一起读一下我们发现的结论。
师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。
师:你学到了些什么?
师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)。
师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)。
修改建议。
结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。
多边形平行四边形的面积教案篇十九
本次联片教研活动的主题《追求三步导学精致化》,朗老师参与本次活动做课,之前经过3次磨课,磨课过程体现了我们对本次活动的重视和积极参与的认真态度,一节优质的课展现了联合体团队的智慧和授课教师孜孜不倦的探究精神。本节课的教学思想体现了三步导学精致化,学生成为学习主体。
在上课之前,朗老师以这样的方式和学生交流:成功=勤于动脑+合作探究+正确方法简单的一个公式,有数学的特色,运算符号参与简单明了,老师的解读给学生以信心和合作探究重要性。
好的开端等于成功的一半。本节课具有一下特点:
开课导入,郎老师采用设疑的方法让学生猜一猜屏幕上长方形和平行四边形两个图形哪个面积大,同学们在问题驱动下大胆猜想,同时有了操作、尝试的欲望。通过猜一猜,比一比方法,产生了不同的结果,这时自然的引发了学生的认知冲突,老师顺势引导把问题大胆的抛给学生。出示:请同学们动手动脑,想办法探求平行四边行的面积,并在小组内交流自己的方法。郎老师抛弃了纯课件演泽的方法,尊重学生的认知规律,让学生动手操作、观察比较、分析讨论,借助课本图示和文字的帮助,在小组内探究平行四边形的底和高与长方形的长和宽有怎样的关系,老师让学生呈现自己真实的想法,让他们充分讨论、辨析,直到真理越辩越明,知识点自然生成,乃至水落石出。最后郎教师再把课件展示了平移拼补过程,和同学们共同归纳总结,充分体现新课程提倡的重视过程与方法,营造了一个真实的课堂。认知冲突是学生学习动机的源泉,也是学生积极参与思维学习的动力。在教学中不断设置认知冲突,激发了学生的参与欲望,把主动权还给学生,让学生主动参与操作、思考,思维的火花在不断碰撞,课堂富有生命力。在整个教学过程中郎老师充分发挥学生主动性,师生互动,充分调动了学生的学习兴趣,让学生享受学习,快乐学习。
在讲台上,郎老师仪表堂堂,教态自然,表情亲切,整节课始终面带微笑。课堂中郎老师语言清晰、简练、生动、有趣,对学生的评价真诚而富有真情,充满赏识与鼓励,一次掌声,一个抚摸,一个点头微笑,都体现了郎老师对每一位学生的尊重。学生只有思维上的困惑,没有任何心理压力。
郎老师十分注重学生的知识性、个性和创造性的发展,当学生通过自己动手运用割补平移这种转化的思想时,郎老师让她在巡视过程中发现的每位同学的思路都展示给大家。在最后一个练习环节老师还渗透了微积分的思想,为以后初小学衔接好铺垫。正是因为老师给了每一位学生开发的思维空间,注重了数学思想的培养,学生们才会得到不同层次的提高,展现出不同的精彩。
最后谈谈两个方面的问题值得我们共同探讨、商榷。
1、练习的设计应更具有层次性、有坡度,帮助学生对于平行四边形的面积是底和高决定的,底乘所对应的高的理解。
2、本节课在有效的时间里,面积公式的推导能否让更多的学生参与交流。
优质课堂需要具有教育专业知识和教育智慧的优秀教师。郎老师从教案的设计到课堂的生成无不显露着智慧的光芒,相信老师们听后一定会有所启发,本节课堂的氛围在我们身边萦绕,这种扑面而来的升本课堂令人振奋、令人鼓舞、会让我们的老师更智慧更健康,让我们的升本课堂焕发生机与活力,让我们的学生充满兴趣和积极性,让我们共同努力吧,打造升本课堂的魅力。
【本文地址:http://www.pourbars.com/zuowen/9257975.html】