优秀的领导者懂得倾听和赏识团队的贡献。写总结时,我们应该注重语言的准确性和通顺度,尽可能用简单明了的语言来表达意思。接下来是一些常见的总结表达方式,供大家参考借鉴。
有理数乘法说课稿篇一
听了宋老师展示的《同底数幂的乘法》一堂课,我认为宋老师教学基本功扎实,教学上有创意,教学脉络清晰,重难点突出,这是一堂成功的课。现将从以下几个方面来谈我的感受:
1、教师的基本功扎实:宋老师的教态自然大方,语言准确,板书标准,给学生起到了很好的示范。
2、引出课题很有创意:利用目前比较流行的手机做文章,下载短信、图片等内容,引出流量和210,提问学生这个表示什么?引起学生的兴趣和注意。
并且能够准确把握教学目标,选择教学内容恰当,把重点难点讲解得很透彻。
3、充分展现法则的生成过程:在教学同底数幂的乘法法则时,老师没有直接把同底数幂的乘法法则直接地呈现给学生,而是通过复习原有的知识,如:25表示什么?10×10×10×10×10可以写成什么形式?同底数幂的乘法在生活中的实例自然呈现,使知识点的探究水到渠成。通过从具体算式到抽象的用字母表示式子,逐步的演绎,归纳出同底数幂相乘的法则,使学生印象深刻。
4、教学目标明确,重难点突出:整个教学过程始终围绕教学目标展开,教学脉络清晰,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。在教学中充分运用类比的方法,有助于突出教学重点,突破教学难点,从而扎实地掌握数学知识,发展逻辑思维能力。
有理数乘法说课稿篇二
教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现"把一个因数换成它的相反数,所得的积是原来积的相反数".接着安排了"试一试"让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。
知识目标:掌握有理数的乘法法则并会运用它进行计算。
能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。
情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。
两个有理数相乘的符号法则和有理数乘法法则的得出及应用。
从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。
因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的思维训练题组a与思维训练b.
遵循新教改提倡的"以学生为主体"的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了"发现、探究法""分层递进法""分组学习""合作与交流"等有利于学生学习教法与学法。
多媒休课件。
1、复习简单的算术数乘法。
(1)计算48×1/2,5/12×3/5,。
(引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)。
(3)你会计算(-3)×(+2),(-3)×(-2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。
1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定。
(1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?
(2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?
从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(-100)×2=-200.
当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"-3",所得的积是原来积"6"的相反数"-6".再看上一题得到的算式100×2=200,(-100)×2=-200,一般地,"一个因数换成它的相反数所得的积是原来积的相反数".
3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。
4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零".随后应用此法则计算,讲解课本上的p51例题。
例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)。
解:(1)(-5)×(-6)=+(5×6)=30;。
(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;。
(3)=-(5/3×12/5)=-4。
强调学生应用乘法法则时注意两点。
(1)先确定积的符号。
(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。
让同学做书上的配套练习p52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。
有理数乘法说课稿篇三
教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现“把一个因数换成它的相反数,所得的积是原来积的相反数”.接着安排了“试一试”让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。
知识目标:掌握有理数的乘法法则并会运用它进行计算。
能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。
情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。
两个有理数相乘的符号法则和有理数乘法法则的得出及应用。
从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。
因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的思维训练题组a与思维训练b.
遵循新教改提倡的“以学生为主体”的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了“发现、探究法”“分层递进法”“分组学习”“合作与交流”等有利于学生学习教法与学法。
多媒休课件
(一)看公益广告,渗透环保思想,引入新课。
1、复习简单的算术数乘法
(1)计算48×1/2,5/12×3/5,
(引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)
(3)你会计算(-3)×(+2),(-3)×(-2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。
(二)创设问题情景,建立数学模型,探究新知。
1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定
(1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?
(2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?
从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(-100)×2=-200.
当我们把(+3)×(+2)=6中的一个因数“3”换成它的相反数“-3”,所得的积是原来积“6”的相反数“-6”.再看上一题得到的算式100×2=200,(-100)×2=-200,一般地,“一个因数换成它的相反数所得的积是原来积的相反数”.
3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。
4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:“同号得正,异号得负”进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示“两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零”.随后应用此法则计算,讲解课本上的p51例题。
例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)
解:(1)(-5)×(-6)=+(5×6)=30;
(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;
(3)=-(5/3×12/5)=-4
强调学生应用乘法法则时注意两点
(1)先确定积的符号
(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。
(三)小组交流,练习巩固,演绎应用所学的知识。
让同学做书上的配套练习p52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。
(四)分层次思维训练,使不同的学生得到不同的发展。
有理数乘法说课稿篇四
笔算多位数乘一位数(连续进位)评课稿 这堂课是人教版小学三年级上册笔算乘法中的三位数乘一位数,是在学生能够比较熟练地口算两位数乘一位数和笔算三位数乘一位数(不进位)的基础上进行教学的。李老师从学生已有的知识经验出发,精心设计教学过程,引导学生成功地掌握了本节课的学习内容,达到了教学目的,我认为这节课有以下特色:
特色一:整体结构合理,教学过程流畅,环环相扣。从复习到新授再到练习,无处不见老师安排之精心。李老师在安排复习题时很有针对性,复习题服务于新授知识,通过复习,再现笔算两位数乘一位数的过程和笔算三位数乘一位数(不进位)的规律,为探索笔算三位数乘一位数(连续进位)的顺序及理解笔算乘法的算理准备了条件。进行这样有效的复习,使学生已掌握的知识技能对新知识、新技能的学习产生了积极的影响,更有利于发挥学生学习的主体作用。
特色二:讲练结合,练习题内容全面,题型丰富且有代表性,有计算题、填空题、解决问题。每道题的选择都是精挑细选的。计算题让学生及时多次用竖式计算,经历三位数乘一位数(连续进位)的笔算过程,从而让学生掌握计算方法。
特色三:计算教学与解决问题教学有机地结合在一起,让学生感觉到数学源于生活。这个特色体现在本节课的例题和应用题中。我相信,通过学习,学生们都能切实体会到计算在生产和生活中的意义和作用。
分析的过程中,李老师就有针对性地纠正错误,加深同学的印象,让他们更好的掌握笔算乘法的规律。
李老师在教学中还有很多的优点,但我觉得这些地方可以再注意一下:
第一、充分利用教材提供的素材,创设生动有趣的具体情境,将学生置于学习活动的主体地位,让学生主动探索计算方法。例如,在呈现例题4解决运动场最多可坐多少人的情境,让学生将要解决的问题当作自己的问题来解决,将自己置于学习活动的主体地位,使学习材料包含生气,对学生更具吸引力,很容易激起学生学习的兴趣。此时,可以放手让学生自主解决“怎样算”的问题。此时已经调动了所有学生的参与意识,人人的思维都很活跃,在这个基础上,运用合作学习方式,让学生分小组合作学习,在交流中互相学习,体验解决问题策略的多样化。
第二、李老师可以将练习题组织成生动有趣的练习活动。比如,判断纠错之后,可以设计这样的提问:你想提醒大家在计算三位数乘一位数笔算时要注意什么?既可加深对知识的理解、梳理,也让学生有了积极健康的体验。将计算题设计成一个游戏,灰姑娘在晚宴上掉了一只鞋子,在大屏上出示6只写有算式的鞋,说明鞋上两个数相乘得数是672的那只鞋就是灰姑娘的,你能帮她找到吗?这样设计练习,既可以增加练习的乐趣,又使学生在计算游戏中体验助人的快乐。
第三:将估算与检验、改错结合起来。李老师设计了竖式计算一环节,我觉得在计算之前可以让学生先估一估再计算,学生笔算后再提醒学生用估算检查一下笔算的结果,这样不但增强了学生估算的意识,培养了学生估算的能力,而且有利于提高做题的正确率。
以上是我个人的意见,如有不当之处请老师包涵。
有理数乘法说课稿篇五
教学目标
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的'方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
有理数乘法说课稿篇六
今天有幸聆听了陈师上的《口算乘法》一课,感触颇深。如何上出扎实有效的计算课一直是我们教师必须关注的问题。接下来就结合谈谈自己的看法。
计算教学原本较枯燥,学生学习兴趣不高,但如果结合实际情境,有了现实情境的支撑,学生的学习就变得有意义了。本课课首陈老师出示一个算式让学生编实际例子,寻找生活原型,唤起学生的生活经验,从而为课中的探究提供了现实起点。其次是课中新课探知部分创设了学生喜欢的游乐园问题,逐渐增加人数,顺理成章循序渐进地探究整十、整百、整千数乘两位数,课末创设游乐园中算各种项目票价的情境,让学生提出问题并解决。整个过程由解决问题贯穿始终,学生也兴致很高,让他们体验到计算不只是为了计算,还可以解决问题。
如果把本课知识比成一颗珍珠,那么整个乘法教学就是一串珍珠。只有把珍珠串起来,它才能散发出光芒。本课的知识在整个体系中并不是孤立的,前面有表内乘法,后面有乘法估算、笔算,还有更大数目的乘法口算。从陈老师这堂课我们可以感受这种联系。如:课前从2×9引入,先是口算,唤起学生对乘法口诀应用,接着是理解20×9的数学意义及现实意义,不仅复习了旧知,同时为后面的学习作好了孕伏,搭好脚手架。接下来是新课展开部分,让学生学习10×20,再20×20,从十乘几十到几十乘几十,再拓展到几百、几千乘几十,由此逐步总结出口算方法,再通过一定的口算练习和应用,使学生形成一定的计算技能,并学会应用乘法口算解决实际问题,发展了思维。整个学习过程是一气呵成的,让我们感受到了数学应该是求联求变的思想。
计算教学的核心就是理解算理掌握算法。本课的算法是很简单的,就是看成几乘几,再在得数末尾添加同样多的0。但是学生解释为什么可以这样算时就不知道怎么表达了,因此理解算理是本课的难点。如何使这算法和看成几个十、百、千乘几再在得数末尾添上相应的0的算理联系沟通呢?从这堂课我们可以得到一些启发和思考。陈老师在课首是以表内乘法9×2引出10×20、20×20让学生初步感知整十数乘一位数的算法,没有很快就进行方法优化。而是在接下来的练习中逐步引导到看成几个十乘几王得几个十。接着是放手让学生自己探究整百整千数乘两位数,让他们在这过程中逐步体会到可以看成几个百、几个千乘几十得几个百或千,举一反三,最后通过观察这三种类型的口算,总结出计算方法是看成表内乘法来算,然后添加相应的0,从而优化概括出计算方法,促进新旧知的融合。这时我想学生的思想水平应该不是课前那种模糊混沌,应该是经历了一定的思考和体验,相信他们不只是会算了,而且还知道了为什么这样算。
有理数乘法说课稿篇七
一、学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米
2×3=
b.-2×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米
-2×3=
c.2×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向运动米
2×(-3)=
d.(-2)×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向运动米
(-2)×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=同号得
(-)×(+)=异号得
(+)×(-)=异号得
(-)×(-)=同号得
b.积的绝对值等于。
c.任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本p75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。
(3)学生做p76练习1(1)(3),教师评析。
(4)教师引导学生做p75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。
4、讨论对比,使学生知识系统化。
有理数乘法
有理数加法
同号
得正
取相同的符号
把绝对值相乘
(-2)×(-3)=6
把绝对值相加
(-2)+(-3)=-5
异号
得负
取绝对值大的加数的符号
把绝对值相乘
(-2)×3=-6
(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零
得零
得任何数
5、分层作业,巩固提高。
有理数乘法说课稿篇八
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
1、创设问题情景,激发学生的求知欲望,导入新课。
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2×3=
b.-2×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2×3=
c.2×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2×(-3)=
d.(-2)×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2)×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=同号得
(-)×(+)=异号得
(+)×(-)=异号得
(-)×(-)=同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本p75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做p76练习1(1)(3),教师评析。
(4)教师引导学生做p75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ;当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、讨论对比,使学生知识系统化。
有理数乘法有理数加法
同号得正取相同的符号
把绝对值相乘
(-2)×(-3)=6把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)×3=-6(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零得零得任何数
5、分层作业,巩固提高。
本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。
有理数乘法说课稿篇九
我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。
一、教材分析
1、教材的地位和作用
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
2、教材的重点和难点
本节课的重点是有理数的乘法法则。这是因为:
(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。
(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。
本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。
二、教学目标
1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。
三、教学方法
本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。
四、学法指导
通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。
五、教学程序设计
本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。
以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:
(一)创设情境、引入新课
教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。
(二)观察——猜想
这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。
意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。
(三)探究——验证
教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。
(四)比较——提炼
在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。
(五)分析法则、掌握实质
教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。
(六)应用——巩固:
例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。
(七)小结——反思这一环节我设计了三个问题:
1、本节课你学到了什么?
2、本节课你有何收获?
3、你还有什么疑问?
目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。
(八)作业——延展
为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
有理数乘法说课稿篇十
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
:有理数除法的法则及应用;求一个有理数的倒数。
在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习程:
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。
(2)几个有理数相乘, ,积就为零。
(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:
(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。
____________________。
(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)
学以致用 计算:
(1) (42)7 (2) ( )( )
例2、计算(1) ( )( )( ) (2) ( )( )
(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)
独立完成课本p59练习2,3题。(将完整的计算过程写在下面空白处)
:(独立完成)
1 填空:(1)2 的倒数与 的相反数的积是_______。
(2)(1)(3)( )=______。
(3)两个数的商为正数,那么这两个数一定是_________。
(4)一个数的倒数是它本身,则这个数是____________。
2、计算:(1) (2)
(3)、 (4) ( + )
1、说一说:
本节课我学会了 ;
使我感触最深的是 ;
我感到最困难的是 ;
我想进一步探究的问题是 。
2、:评一评
自我评价 小组评价 教师评价
1(必做题) 课本60页习题a组3,4题。(要求:做在作业本上)
2(选做题) 课本60页习题b组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)
有理数乘法说课稿篇十一
(一)知识技能
1.使学生掌握多个有理数相乘的积的符号法则;
2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;
(二)过程方法
在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。培养学生观察、归纳、概括能力及运算能力.
(三)情感态度
通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。培养学生的观察和分析能力,渗透转化的教学思想。
教学重点
乘法的符号法则和乘法的运算律.
教学难点
几个有理数相乘的积的符号的确定.
【复习引入】
1.有理数乘法法则是什么?
2.计算(五分钟训练):
(5)-2×3×(-4);(6)97×0×(-6);
(7)1×2×3×4×(-5);(8)1×2×3×(-4)×(-5);
(11)(-1)×(-2)×(-3)×(-4)×(-5).
有理数乘法说课稿篇十二
(一)知识点目标:有理数的乘法运算律。
(二)能力训练目标:1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2.能运用乘法运算律简化计算。
(三)情感与价值观要求:
1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2.在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。。
创设问题情境,引入新课
问题2:计算下列各题:
(1)(一7)×8;
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?
(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)
讲授新课:
用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[师生]教师引导学生讨论、交流,从中体会学习的快乐。
3.用简便方法计算:
练习(教科书第42页)
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)
(2)[(4×8)×25一8]×125
有理数乘法说课稿篇十三
1.确定积的符号:
积的符号;
积的符号;
积的符号。
2完成下面填空:
(1)(-10)×()×0.1×6=_______
(2)(-10)×(-)×(-0.1)×6=________
(3)(-10)×(-)×(-0.1)×(-6)=________
(4)(-5)×(-)×3×(-2)×2=________
(5)(-5)×(-8.1)×3.14×0=________
3.计算
(1)8+(-0.5)×(-8)×(2)(-3)××(-)×(-)
(3)(-)×5×0×(-)(5)(-6)×(+37)×(-)×(-)
4.计算:(1)(-4)×(-7)×(-25)(2)(-)×8×(-)
(3)(-0.5)×(-1)××(-8)(4)(-5)-(-5)××(-4).
(5)(-3)×(7)×-3×(-6)(6)(-1)×(-7)+6×(-1)×
(7)1-(-1)×(-1)-(1)×0×(-1)
有理数乘法说课稿篇十四
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
一、知识导向:
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
二、新课:
1、知识基础:
其一:小学所学过的乘法运算方法;
其二:有关在加法运算中结果的确定方法与步骤。
2、知识形成:
(引例)一只小虫沿一条东西向的`跑道,以每分钟3米的速度爬行。
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
列式:
即:小虫位于原来出发位置的西方6米处
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
(1)(2)
三、巩固训练:
p52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
p57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
有理数乘法说课稿篇十五
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
建议。
(一)重点、难点分析。
本节的重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构。
(三)教法建议。
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是学过的算术乘法。
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
第12页。
有理数乘法说课稿篇十六
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
建议。
(一)重点、难点分析。
本节的重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构。
(三)教法建议。
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
第12页 。
【本文地址:http://www.pourbars.com/zuowen/9391434.html】